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Abstract

Amplitude of natural halo orbits around the Sun-Earth L2 (SEL2), which is as much as 100,000
km or more, can be made smaller artificially by adding small amount of external force. This orbit
is referred to as “the small-amplitude periodic orbit”. From its relatively small size, the geometric
relationship among a spacecraft, the sun and the earth is practically fixed, which leads to the
advantage of making the thermal condition of spacecrafts more stationary. The magnitude of the
force required for the orbit maintenance is comparable to solar radiation pressure (SRP) applied on
a surface of a spacecraft, which means the small amplitude periodic orbit can be achieved without
fuel consumption if a spacecraft controls its attitude properly.
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概要

太陽-地球第 2ラグランジュ点 (SEL2)周りのハロー軌道の大きさは一般的に 100,000 km以上の非常
に大きな値を取るが，微小外力を加えることにより，この大きさは飛躍的に小さくすることができる．
この軌道は「小半径周期軌道」などと呼ばれる．軌道半径が小さいことにより，宇宙機と太陽・地球
との幾何学関係はより固定されることになり，宇宙機に安定した熱環境を提供する．この軌道維持に
必要な外力の大きさは太陽光圧の大きさ程度であり，宇宙機の姿勢を適切に制御すれば推進剤不要で
実現できる．

1 Introduction

1.1 Background

Figure 1: Summary of Background

5 equilibrium points are derived from a circu-
lar restricted three body problem which con-
sists of a star, a planet and a spacecraft.
Those equilibria are refered to as “Lagrange
points”. As shown in the Figure 1, especially
the 2nd Lagrange point in the Sun-Earth sys-
tem (called as SEL2) has various advantages
such as (1) fixed geometry among the Sun,
Earth and a spacecraft, (2) relatively close po-
sition to Earth, (3) low energy cost for orbit
entry/escape and (4) stationary input of heat.
From the advantages (1), (2), (3), the orbit
around SEL2 seems to be a good candidate of
a space port for deep space explorers. More-
over, the feature (4) contributes to reduction of
spacecraft thermal design cost, and thus fits to
infrared observatory missions with strict ther-
mal requirements.
Amplitude of natural halo orbits around the
Sun-Earth L2 (SEL2) is usually as much as
1,000,000 km or more. If this orbital size is re-
duced to the size of Earth eclipse, mission de-
sign will become more flexible. Tarao proposed
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that such a small-sized orbit is achieved only
by adding minute continuous external force to
a spacecraft[1]. This orbit is referred to as “the
small-amplitude periodic orbit”. Furthermore,
Tanaka showed that the magnitude of the force
required for the orbit maintenance is compara-
ble to solar radiation pressure (SRP) applied
on a surface of a spacecraft, which means the
small amplitude periodic orbit can be achieved
without fuel consumption if a spacecraft con-
trols its attitude to properly[2].

1.2 Problems

Above-mentioned orbit and attitude dynam-
ics is complicated because SRP induces at-
titude disturbance which subsequently leads
to orbital perturbation. In addition, since
SEL2 is an unstable equilibrium point, feed
forward control proposed in the research such
as [2] will cause divergence from a nominal
orbit in long time propagation. Moreover,
though the system of a three body problem
exhibits strong nonlinearity, the previous re-
searches conducted the simulations only in a
linear system. Such a situation is insufficient
for

1.3 Composition of This Paper

In this study, the control method which
achieves

In this paper, basic theories of the dynamics
are introduced first. Next, the control strat-
egy is proposed, followed by its demonstration
by numerical simulations. From its result, it is
shown that this strategy is significantly effec-
tive for the transformable spacecraft.

2 Dynamics of the System

2.1 Circular Restricted Three
Body Problem

A general three body problem is known as an
unintegrable system, in other word, the equa-
tions cannot be solved analytically. Thus some
approximation should be imposed to analyse
the motion of particles in a three body sys-
tem. One often used approximation is “cir-
cular restricted three body problem” (shortly,
CR3BP), which satisfies (1) one particle has
negligible mass which doesn’t influence the
other two massive bodies (these two main ce-
lestial bodies are refered to as “primaries”),

(2) two primaries are on a planar circular or-
bit around their barycenter. In Sun-Earth-
Spacecraft system, the particle corresponds to
a spacecraft while the Sun is labeled as the
1st primary and Earth as the 2nd primary.
For simplicity of notations and convenience in
numerical calculations, following all formula-
tions are normalized such that the unit length
equals to distance between primaries (in the
Sun-Earth case, 1AU), the unit mass to sum of
two primaries’ mass and the unit time to pri-
maries’ rotational period devided by 2π (that
is, one year corresponds to 2π in the Sun-Earth
case). The system is illustrated in Figure 2 and
definition of parameters are shown in Table 1.
This x and y in the rotating frame are on the
orbital plane of the two primaries.

Figure 2: The System Illustration

Table 1: Definition of Parameters
name character

mass of 1st primary m1

mass of 2nd primary m2

mass ratio of 1st primary µ1 =
m1

m1 +m2

mass ratio of 2nd primary µ2 =
m2

m1 +m2

distance of m1 and particle r1
distance of m2 and particle r2

According to the normalization, gravity con-
stant G becomes 1, mean motion (= 2π/T ,
where T is the period of primaries) also equals
to 1 and the distance between the barycenter
and m1 and m2, that is, d1 and d2 respectively
corresponds to µ2 and µ1.
First of all, in inertial frame lagrangian is de-
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scribed as

L = Ekinetic − Epotential

=
1

2

(
Ẋ2 + Ẏ 2 + Ż2

)
−
(
−µ1

r1
− µ2

r2
− 1

2
µ1µ2

)
(1)

where

r1 =
[
X + µ2 cos t Y + µ2 sin t Z

]T
r2 =

[
X − µ1 cos t Y − µ1 sin t Z

]T (2)

Coordinate transformation from inertial frame
to rotating frame is expressed asXY

Z

 =

cos t − sin t 0
sin t cos t 0
0 0 1

xy
z

 = At

xy
z


(3)

By differentiating equation (3), the following
equation is obtainedẊẎ

Ż

 = Ȧt

xy
z

+At

ẋẏ
ż

 = At

ẋ− y
ẏ + x
ż

 (4)

Using the relationship described in equation
(4), equation (1) is transformed into

L =
1

2

(
Ẋ2 + Ẏ 2 + Ż2

)
−
(
−µ1

r1
− µ2

r2
− 1

2
µ1µ2

)
=

1

2

[
(ẋ− y)

2
+ (ẏ + x)

2
+ ż2

]
−
(
−µ1

r1
− µ2

r2
− 1

2
µ1µ2

)
(5)

where

r1 =
[
x+ µ2 y z

]T
r2 =

[
x− µ1 y z

]T (6)

Finally, the equation of motion is obtained
from Euler-Lagrange equation d

dt
∂L
∂ẋi

− ∂L
∂xi

= 0,

ẍ = 2ẏ + x− µ1(x+ µ2)

r31
− µ2(x− µ1)

r32

ÿ = −2ẋ+ y − µ1y

r31
− µ2y

r32

z̈ = −µ1z

r31
− µ2z

r32
(7)

This set of equations can be linearlized into
following form,

ẍ = 2ẏ + (1 + 2c2)x

ÿ = −2ẋ+ (1− c2)y

z̈ = −c2z
(8)

Equations (7) are still unintegrable, they are
much simpler to analyse than that of a gen-
eral three body problem. After some calcula-
tion for these equations, L2 point can be deter-
mined as the unstable equilibrium point (detail
derivation is described in [3]).

2.2 Formulation of Solar Radia-
tion Pressure

As stated in chapter 1, we focus on the orbital
maintenance utilizing solar radiation pressure
(SRP). Before explaining the control law, the
SRP force applied on surface of a spacecraft
must be formulated. SRP force is decomposed
into 3 factors: specular, diffusive and absorp-
tion (See Figure 3).

Figure 3: 3 factors of SRP force
(from left, Specular, Diffusive, Absorption)

Total acceleration by SRP force is expressed
as

aSRP = −PA
m

(s · n)

[
(Cabs + Cdif )s

+

(
2

3
Cdif + 2(s · n)Cspe

)
n

]
(9)

where Cspe, Cdif , Cabs is coefficients of specu-
lar, diffusive, absorption respectively and s,n
is the vector from the Sun and a normal vector
of a surface respectively (both are unit vectors)
and m is mass of a spacecraft. Typical optical
properties are given in Table 2.

Table 2: Optical Properties List
Material Spe. Dif. Abs.

Polyimido 0.375 0.255 0.370
Solar Cell 0.086 0.060 0.854
Mirror 1.0 0.0 0.0
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3 Control Law

3.1 Attitude Control Law

In this section, the control method which
enables the small amplitude periodic orbit
around SEL2 to be kept using SRP. A space-
craft has to control its attitude to the Sun to
obtain proper external force to keep the or-
bit. This control law is based on that pro-
posed by Tanaka [2], which is developed in lin-
early approximated system. In this study, the
spacecraft motion is calculated according to a
CR3BP nonlinear equations (7). Validity of
the linear control law in such a nonlinear sys-
tem is confirmed in numerical simulations.
Attitude of the spacecraft against the Sun
is expressed with 2 angles. These angle are
named as “sun angle”, which is depicted in Fig-
ure 4. In this figure, φ is the out-of-plane angle
and ψ is the in-plane angle (“plane” means the
orbital plane of the spacecraft here).

Figure 4: Definition of Sun Angle

The normal vector n and the sun vector s are
approximated as following equations assuming
sun angle to be small enough,

n =

− cosϕ cosψ
− cosϕ sinψ

sinϕ

 ≃

−1
−ψ
ϕ


s ≃

−1
0
0

 (10)

Substituting these vectors into equation (9),
we obtain  S1

S2ψ
−S2ϕ

 (11)

where

S1 =
PA

m

(
Cabs +

5

3
Cdif + 2Cspe

)
S2 =

PA

m

(
2

3
Cdif + 2Cspe

) (12)

Now the target orbit shape is given in the fol-
lowing equations expressed in xyz coordinate,

x = −Ax cos (ωt+ θxy) + xe

y = αAx sin (ωt+ θxy)

z = Az cos (ωt+ θz)

θz = θxy + nπ, (n = 0, 1)

(13)

substituting equations (11), (13) into lin-
earized CR3BP equation (8), we obtain the
sun angle control law as following equations
(see detail in [2]).

ψ =
1

S2

(
−ω2 +

2ω

α
+ c2 − 1

)
αAx sinωt+ θxy

ϕ = − 1

S2

(
−ω2 + c2

)
Az cosωt+ θz

(14)

3.2 Feedback Control

L2 is a unstable equilibrium point and thus
tends to generate orbit divergence as propaga-
tion time grows longer. For this reason, some
feedback control method must be conducted.
In this paper, LQR feedback control is adopted
to linearized CR3BP equations (similar orbit
maintenance is showed in [4]).
Objective function is expressed as

J =

∫ ∞

0

(x̃TR1x̃+ ũTR2ũ)dt (15)

x and u in this equation are state vector and
control input vector reppectively. Weight ma-
trix R1 and R2 are defined as

R1 =


A−2

x

A−2
y O

A−2
z

(Axω)
−2

O (Ayω)
−2

(Azω)
−2


R2 =

[
R21 0
0 R22

]
R21 = 10

[
1

S2

(
−ω2 +

2ω

α
+ c2 − 1

)
αAx

]−2

R22 = 100

[
1

S2

(
−ω2 + c2

)
αAz

]−2

(16)
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4 Simulation

In this study, validity of the control method
is verified with numerical simulation. In this
simulation, system dynamical equations are
given in non-linear CR3BP system while the
control laws are developed in the linearized
system.
Spacecraft configuration is assumed as
panel shaped spacecraft. Each panel has
1m×1m×0.1m square area an thickness, 10
kg wight and different optical properties. In
this simulation, total panel numbers are set
to be 17 where the surface of 8 of them are
polyimido (MLI), 6 are solar cell and 3 are
mirror panel. These optical properties are
given in Table 2. Propagation time is 600 days
(about 3.3 orbital period). As seen in Figure
5 and 6, the spacecraft seems not to maintain
the nominal orbit without feedback control
whereas feedback control keeps the orbit more
stable. From this result, the control law
derived in section 3 is valid in the non-linear
CR3BP system.

Figure 5: Orbit WITHOUT Feedback Con-
trol, Propagation Time: 600 days

Figure 6: Orbit with Feedback Control, Prop-
agation Time: 600 days

5 Summary

In this paper, the long-term station-keeping
around SEL2 is developed. Using SRP force
as the external force input, the orbital main-
tenance is achieved without fuel consumption.
Furthermore, combinating this control law and
the LQR feedback control, the spacecraft can
keep on this orbit even around the unstable
equilibrium point such as SEL2.
As future works, this control should be revised
into discrete form because a spacecraft cannot
perform completely continuously in actual op-
erations.
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