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Abstract: The problem of estimating the angular position of a spacecraft moving at a constant velocity using two rotating 
tracking stations is considered. This reports on an initial phase of analytical studies on the optimal attainable estimation 
performance and associated receiver design. Perametric dependence of the optimum attainable estimation is also studied. 
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概要 

	 2つの地上局を用いて、定速度で巡航している探査機の角度位置推定について本稿で論じる。	
角度での位置変動に対する周波数での観測データを用いて、カルマンフィルタによる逐次推定を行

い解析モデルによる角度位置推定を精度含め解析及び評価を行った。 
 
1. INTRODUCTION 
 Consider the situation in Fig.1 where at a reference time t=0 
there is a spacecraft at point

� 

V  and two stations at 

� 

S1 and 

� 

S2  relative to Earth geocenter 

� 

O . The spacecraft is assumed 
to be at a distance 

� 

d0 from the geocenter 

� 

O  at time t=0. It is 
also assumed to be moving at a constant velocity 

� 

v  relative 
to geocenter 

� 

O  for all time in a direction which is at an angle 

� 

α  with respect to 

� 

OV . The stations are both assumed to be 
rotating at  a constant angular velocity 

� 

ω  about 

� 

O . At time 
t=0, station 

� 

S1 is at an angle 

� 

ε0 and the spacecraft at an  

 
Fig. 1. Spacecraft and station locations 

angle 

� 

γ 0 with respect to a star reference. The angle between 
the stations is denoted by 

� 

η and the distances of the stations 
from geocenter by 

� 

R1 and 

� 

R2 . We assumed that the 
spacecraft is continuously transmitting a signal 

� 

s(t). 
Each station receives an additive noise-corrupted version of 
this transmitted signal. The receives waveforms from both 
stations over a given time interval are then used to estimate the 
unknown vehicle angle 

� 

γ 0. This article considers this  
 
estimation problem based on the assumption that 

� 

d0, 

� 

v , 

� 

α , 

� 

η, 

� 

ω , and 

� 

ε0 are known. These assumptions are made so 
that effect of the rotating stations and the moving target on 
angular position estimation can be studied. 
 The estimation problem is defiend in Section 2 below along 
with a discussion of the minimum attainable mean square 
estimation error performance. Since we could not determine 
the optimal estimator, a suboptimal estimator is derived in 
section 3.The performance of this suboptimal estimator is 
examined relative to the attainable performance on angular 
position, station rotation, station distance from geocenter and 
observation time duration. The specific case of a sinusoidal 
ranging signal is considered and numerical computations of 
the optimum attainable angular estimation accuracy are 
performed for several parameter values. 
 
2. THE ESTIMATION 
 Let us first derive the equations for the received waveforms 
at each station. The spacecraft is assumed continuously 
transmit a signal 

� 

s(t) . The received waveform at station 

� 

S1 
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is assumed to 

� 

y1(t) = s[ t −φ1(t,γ 0)]+ v1(t)                 (1) 
where 

� 

v1(t)  is additive white Gaussian noise with power 
spectral density 

� 

N1  and 

� 

φ1(t,γ 0)  is effectively the signal 
delay time. Similarly, the received waveform at station 

� 

S2  is 
assumed to be 

� 

y2 (t) = s[ t −φ2 (t,γ 0)]+ v2 (t)               (2) 
where 

� 

v2 (t)  is additive white Gaussian noise with power 
spectral density 

� 

N 2  and 

� 

φ2 (t,γ 0)  is the signal delay time to 
both deterministic functions of the unknown spacecraft angle 

� 

γ 0, 

� 

v1(t) and 

� 

v2 (t)  are mutually stastically independent.  
The receiver’s function is to estimate 

� 

γ 0  based on 
observations 

� 

(y1(t), y2 (t)) , 

� 

−T1 ≤ t ≤T2 , with a goal of 
minimizing error estimator is the conditional mean estimator 
when the prior distribution of

� 

γ 0 is known.  
 
In this case, the conditional mean estimator is nonlinear. 
Moreover, it appears that the problem of determining explicit 
estimator equations is not tractable. An approach to overcome 
this problem is to derive suboptimum receivers that can be 
implemented instead. 

� 

φ  is the following expressions: 

  

� 

φ1(t,γ 0) = 1− (v /c)2[ ]−1
[−(v /c)2 t − (vd0 cosα) /c 2

                + vR1 cos(γ 0 +α −ε0 −ωt) /c 2 ]

                + 1− (v /c)2[ ]−1
t + (vd0 cosα) /c 2[⎧ 

⎨ 
⎩ 

                − vR1 cos γ 0 +α −ε0 −ωt( ) /c 2 ]2

                 + 1− (v /c)2[ ]−1
d0

2 + R1
2 − 2R1d0 cos γ 0(([

                 −ε0 −ωt)) /c 2 − t 2 ]}1/ 2

 

 
(3) 

  

� 

φ2 (t,γ 0) = 1− (v /c)2[ ]−1
[−(v /c)2 t − (vd0 cosα) /c 2

                +VR2 cos(γ 0 +α −ε0 −ωt) /c 2 ]

                + 1− (v /c)2[ ]−1
t + (vd0 cosα) /c 2[⎧ 

⎨ 
⎩ 

                − vR2 cos γ 0 +α −ε0 −ωt( ) /c 2 ]2

                 + 1− (v /c)2[ ]−1
d0

2 + R2
2 − 2R2d0 cos γ 0(([

                 −ε0 −ωt)) /c 2 − t 2 ]}1/ 2

 

(4) 
In the next section of this paper we consider one method 
of obtaining a suboptimal receiver by using extended 
Kalman filetr estimation approach. This approach results 
in a relatively simple receiver structure. 

 It is also of interest to determine the optimum mean square 
estimation error so that the performance of suboptimal 
receivers can be evaluated. Unfortunately, it appears in this 
case that the problem of determining this optimum 
performance value is also not tractable. However, it is possible 
to obtain lower bounds on the minimum mean square 
estimation error. The Cramer-Rao lower bound appears to be 
most tractable to use. In the case when 

� 

γ 0 is an unknown but 
nonrandom parameter, the Cramer-Rao lower bound on the 
mean square estimation error of any unbiased estimator 

� 

ˆ γ 0 is 
given by 
     

� 

E ˆ γ 0 − γ 0( )2[ ] ≥ (2 /V1) ˙ s 2 (t −φi (t,γ 0)) ∂φi (t,γ 0)
∂γ 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

dt
−T1

T2

∫
i=1

2

∑
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

−1

 

(5) 
 where 

� 

˙ s (t) = ds(t) /dt . In the case when 

� 

γ 0 is a random 
parameter with known density 

� 

p(γ 0) , the Cramer-Rao lower 
bound on the mean square estimation error of any estimator 

� 

ˆ γ 0 is given by 

� 

E ˆ γ 0 − γ 0( )2[ ] ≥ E (2 /V1) ˙ s 2 (t −φi (t,γ 0)) ∂φ i (t,γ 0)
∂γ 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

dt
−T1

T2

∫
i=1

2

∑
⎡ 

⎣ 

⎢ 
⎢ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

                        −∂
2np(γ 0)
∂γ 0

⎤ 

⎦ 
⎥ 
⎫ 
⎬ 
⎪ 

⎭ ⎪ 

−1
 

(6) 
where the expectation in the right hand side of Eq.(6) is with 
respect to the prior distribution of 

� 

γ 0. For a normal 

� 

γ 0 with 
variance 

� 

σγ
2, Eq.(6) reduced to: 

� 

E ˆ γ 0 − γ 0( )2[ ] ≥ E (2 /V1) ˙ s 2 (t −φi (t,γ 0)) ∂φ i (t,γ 0)
∂γ 0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

dt
−T1

T2

∫
i=1

2

∑
⎡ 

⎣ 

⎢ 
⎢ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

                        +1/σγ
2 ]}−1

 

(7) 
 These lower bounds will be used in the remainder of 
this article to estimate the performance of the suboptimal 
estimator as well as the optimum theoretically attainable 
performance. 
. 
3. ESTIMATOR 
 Consider the problem of estimating 

� 

γ 0  in the following 
equivalent state variable formulation. Let 

� 

γ (t)  be a variable 
state satisfying 

  

� 

˙ γ (t) = 0   ,     

� 

γ (−T1) = γ 0               (8) 
Then 

� 

γ (t) = γ 0 , the parameter to be estimated, for all 

� 

t . 
Rewrite Eqs.(1) and (2) as 

� 

y(t) =
y1(t)
y2 (t)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

s(t −φ1(t,γ 0))+ v1(t)
s(t −φ2 (t,γ 0))+ v2 (t)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥           (9) 

So the equivarent problem is to estimate 

� 

γ (T2)  based on 
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observation

� 

y(t)  in the interval 

� 

[−T1,T2 ] . 
 As we noted previously, the problem of determining the 
estimator is not tractable. An alternative is to derive a 
suboptimal estimator that approximates the minimum mean 
square error estimator. Another alternative is to abandon the 
minimum mean square error criterion and to seek estimators 
based on the maximum likelihood (ML) or maximum a 
posteriori (MAP) criterion. However, it can be shown that the 
optimum ML or MAP estimators are also not practically 
implementable. Hence developing estimators using the ML or 
MAP criterion will also require consideration of suboptimal 
estimators. 
 There are numerous ways of determining  such 
suboptimal estimators. An approach will be to adopt one 
version of the extended Kalman filter algorithm. This 
version is the Kalman filter operating on a linearization 
of the observation equations (9) about the state estimate. 
The reason for adopting this approach over others is its 
relative simplicity. In the nonlinear estimation folklore, 
the extended Kalman filter is regarded as being capable 
of performing as well as other suboptimal schemes in 
most problems. So there is a priori no reason to believe 
that constraining our approach to the extended Kalman 
filter is overly restrictive. 
 Let 

� 

ˆ γ (t)  denote the extended Kalman filter estimate of 

� 

ˆ γ (t) . 
Then a straightforward application of the equations of Ref.1, 
shows that 

� 

ˆ γ (t)  satisfies. 

� 

d ˆ γ (t)
dt

= −P(t) (1/Ni
i=1

2

∑ ) yi (t) − s(t −φi (t, ˆ γ (t)))[ ]

               • s(t −φi (t, ˆ γ (t)) ∂φi (t,
ˆ γ (t))

∂ ˆ γ 
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

      (10) 

� 

dP(t)
dt

= −P2 (t) (1/Ni
i=1

2

∑ ) s(t −φi (t, ˆ γ (t)) ∂φ i (t,
ˆ γ (t))

∂ ˆ γ 
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

2

 (11) 

with initial conditions 

� 

ˆ γ (−T1) = γ 0                            (12) 

� 

P(−T1) =σγ 0
2                           (13) 

where 

� 

γ 0  and 

� 

σγ 0
2  are the prior mean and variance 

respectively of 

� 

γ 0. We shall denote 

          

� 

∂φi (t,γ 0)
∂γ 0 γ 0− ˆ γ (t )

 by    

� 

∂φi[ t, ˆ γ (t)]
∂ ˆ γ 

 

for simplicity. Also, in Eqs. (10), and (11), 

� 

P(t)  represents 
an approximation of the conditional variance of 

� 

ˆ γ (t) . The 
solution of Eq.(11) can easily be shown to be 

� 

P(t) = 1/σγ 0

2 + (1/N i
i=1

2

∑−T 1

t∫
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
) ˙ s 2 (t −φi (t,γ 0))[

          ∂φi (τ ,γ 0)
∂γ 0

⎤ 

⎦ 
⎥ 

2

dτ
⎫ 
⎬ 
⎪ 

⎭ ⎪ 

−1       (14)  

Rewriting Eq.(10) as an integral equation gives 

� 

ˆ γ (t) = γ 0 − P(τ ) (1/N i
i=1

2

∑−T1

t∫ yi[ (τ ) − s(τ −φi (τ , ˆ γ (τ )))

         • ˙ s (τ −φi (t, ˆ γ (τ ))) ∂φ i (τ , ˆ γ (τ ))
∂ ˆ γ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ dτ

   

(15) 
 Thus, Eqs. (14) and (15) give the estimator structure 
with 

� 

ˆ γ (T2) , the desired estimate of 

� 

γ 0. The only prior 
stastical knowledge of 

� 

γ 0  required is its mean and 
variance. 
The expression for 

� 

∂φi[ t, ˆ γ (t)] /∂ ˆ γ  is given in Eqs. (2) 
and (3). These waveforms are implemented in the 
receiver by adjusting the 

� 

ˆ γ (t)  phase contributions in the 
sinusoidal terms. The structure of the estimator is 
somewhat similar to the MAP estimator with normal 
prior distribution for 

� 

γ 0. In Eqs. (14) and (15), 

� 

φi (t,γ ) is 
given by Eq. (3) and 

� 

∂φi (t,γ ) /∂γ . Further simplification of 
Eqs. (14) and (15) result from using the simpler 
approximations in Eqs. (24) to (27) given in section 4 for 

� 

φi  
and 

� 

∂φi /∂γ . Simplification of the basic estimator structure 
apparently cannot be done without specific assumptions on the 
signal structure. 
 The performance of this algorithm unfortunately cannot be 
determined analytically. In evaluating extended Kalman filters. 

� 

P(t)  is only an approximation to the conditional variance of 

� 

γ (t)  (Ref. 1,2). Moreover, 

� 

P(t)  depends on the observations 
and so cannot be determined other than from simulation runs 
of the filter. In spite of these pitfalls, let us examine Eq. (14) to 
obtain a heuristic estimate of the best possible performance of 
the estimator. 
 Assume that the estimator is performing well. Thus, 

� 

γ (t)  
will be close to 

� 

γ (t) = γ 0 . Assume also that 

� 

P(T2)  is a good 
approximation of the mean square estimation error. Then, from 
Eq.(14) we have 

 

� 

P(T2) =

     

(1/N i
i=1

2

∑ ) ˙ s (t −φi (t, ˆ γ (t))) ∂φ i (t, ˆ γ (t))
∂ ˆ γ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

T1

T2∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

1 + (1/N i
i=1

2

∑ ) ˙ s (t −φi (t, ˆ γ (t))) ∂φ i (t, ˆ γ (t))
∂ ˆ γ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

T1

T2∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1

/σγ 0

2

          ≤ (1/N i
i=1

2

∑ ) ˙ s (t −φi (t, ˆ γ (t))) ∂φ i (t, ˆ γ (t))
∂ ˆ γ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

T1

T2∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

−1
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(16) 
Let 

� 

γ 0  be the true value of the unknown angle. So, if 

� 

γ (t) ≅ γ 0 , replacing 

� 

γ (t)  by 

� 

γ 0 in Eq. (16) shows that the 
upper bound on 

� 

P(T2)  is roughly twice the Cramer-Rao 
lower bound (Eq. (5)) on the optimum mean square error. 
Thus from the above heuristic point of view, the best possible 
performance of the estimator is roughly within a factor of 2 
from the Cramer-Rao lower bound of Eq. (5) 
 
4. OPTIMUM THEORITICALLY ATTAINABLE 
  ESTIMATION OERFORMANCE 
 As we noted previously the Cramer-Rao lower bound gives a 
lower bound on the optimum attainable angle mean square 
estimation error. In this section we shall examine the 
Cramer-Rao lower bound in a spesial case. In particular, we 
shall assume the following set of parameters: 

� 

d = 9×108    km

R1 = R2 = 6.5×103    km
v = 10  km / sec
T1 =T2 = 30  min

 

This set of parameters is consistent with the distances 
encounted in a Venus mission. We assume in addition that 

� 

N1 = N 2  for simplicity. We shall first analyze the effects of 
the relative angular positions and the rotation of the Earth on 
the Cramer-Rao lower bound (Eq. (5)). This, then, gives the 
dependence of the optimum attainable performance on these 
effects. 
We first consider the effect of the angular position 

� 

γ 0,ε0 and 

� 

η given in Fig. 1. Since the problem of estimating 

� 

γ 0 is 
nonlinear, the minimum attainable estimation error would 
generally depend on 

� 

γ 0 . Consider first the case when 

� 

ϖ = ν = 0 for insight into dependence. Using the parameters 
in Eq. (17) we have from Eqs. (3) and (4) that 

� 

φ1(t,γ 0) = d0
2 + R1

2 − 2d0R1 cos(γ 0 −ε0)[ ]−
1
2 /c

               ≅ (d0
2 + R1

2)1/ 2 /c[ ] 1− (R1d0 /(d0
2 + R1

2)) cos(γ 0 −ε0)[ ]
 

(18) 

� 

φ2 (t,γ 0) = d0
2 + R2

2 − 2d0R2 cos(γ 0 −ε0)[ ]−
1
2 /c

               ≅ (d0
2 + R2

2)1/ 2 /c[ ] 1− (R2d0 /(d0
2 + R2

2))[
                   cos(γ 0 −ε0 −η)]

 

(19) 
so 

� 

∂φ1(t,γ 0)
∂γ 0

≅ R1d0 /c(d0
2 + R1

2)1/ 2[ ]sin(γ 0 −ε0)       (20) 

� 

∂φ2 (t,γ 0)
∂γ 0

≅ R2d0 /c(d0
2 + R2

2)1/ 2[ ]sin(γ 0 −ε0 −η)    (21) 

Since 

� 

Rid0 /c(d0
2 + R2

2)1/ 2[ ] = 2.2×10−2 , 

� 

φi (t,γ 0)  is 
relatively independent of 

� 

γ 0. Thus an approximation of the 
Cramer-Rao lower bound (Eq. (5)) in the case when 

� 

ϖ = ν = 0 is: 

� 

E ( ˆ γ 0 − γ 0)2[ ] ≥ 2R1
2d0

2

N1c
2 (d0

2 + R1
2)

⎡ 

⎣ 
⎢ ˙ s 2 t − (d0

2 + R1
2)1/ 2

c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−T1

T2∫

                       sin(γ 0 −ε0)dt + 2R1
2d0

2

N 2c
2 (d0

2 + R2
2)

                        ˙ s 2 t − (d0
2 + R2

2)1/ 2

c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−T1

T2∫ sin2 (γ 0 −ε0 −η)dt
⎤ 

⎦ 
⎥ 
⎥ 

−1

 

(22) 
Hence under the assumption that 

� 

R1 = R2  and 

� 

N1 = N 2 , Eq. 
(23) depends inversely on 

� 

f (δ) = sin2 δ + sin2 (δ −η) = 1− cosη cos(2δ −η)     (23) 
where 

� 

δ = γ 0 −ε0 . Note that 

� 

f (δ)  is symmetric about 

� 

δ = η / 2 , which corresponds to when the spacecraft is halfway 
between the two stations (Fig.1). When   

� 

0 ≤ η ≤ 90 , 

� 

f (δ)  
increase as 

� 

δ deviates from 

� 

η / 2 , or when the spacecraft 
moves toward either station from the midpoint. So, when 
  

� 

0 ≤ η ≤ 90 , the worst performance is when the spacecraft is 
exactly halfway between the two stations. When   

� 

η ≥ 90 , the 
converse is true and the best performance is when the 
spacecraft is exactly halfway between two stations (Fig.1). 
 When   

� 

0 ≤ η ≤ 90 , 

� 

f (δ)  increase as 

� 

δ deviates from 

� 

η / 2 , or when the spacecraft moves toward either station 
from the midpoint. So, when   

� 

0 ≤ η ≤ 90 , the worst 
performance is when the spacecraft is exactly halfway 
between the two stations. When   

� 

η ≥ 90 , the converse is 
true and the best performance is when the spacecraft is 
exactly halfway between two stations. Since 

� 

f (δ)  is 
independent of 

� 

δ  when 

� 

η =90  

� 

 , this is the best value 
of 

� 

η from the viewpoint of uniformity of performance 
over a range of 

� 

γ 0. An examination of Eq. (23) shows 
that for   

� 

80 ≤ η ≤ 100 , the variation of performance is 
less than 20% for 

� 

δ  from 0 to 

� 

η. 
The previous consideration are when 

� 

ϖ = ν = 0. Let us 
now consider when 

� 

ω ≠ 0  and 

� 

v ≠ 0 . It is shown that 
approximate expressions for 

� 

φ1 , 

� 

φ2 , 

� 

∂φ1 /∂φ2  and 

� 

∂φ2 /∂γ 0  are: 

� 

φ1(t,γ 0)

     ≅ − 1− v
c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−1
v
c
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+ vd0 cosα
[(d0

2 + R1
2)(c 2 − v 2)]1/ 2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
t

      + d0
2 + R1

2

c 2 − v 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/ 2

− vd0 cosα
c 2 − v 2

      − R1d0

[(d0
2 + R1

2)(c 2 − v 2)]1/ 2 cos(γ 0 −ε0 −ωt)

 

(24) 
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� 

φ2 (t,γ 0)

     ≅ − 1− v
c
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−1
v
c

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+ vd0 cosα
[(d0

2 + R2
2)(c 2 − v 2)]1/ 2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
t

      + d0
2 + R2

2

c 2 − v 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/ 2

− vd0 cosα
c 2 − v 2

      − R2d0

[(d0
2 + R2

2)(c 2 − v 2)]1/ 2 cos(γ 0 −ε0 −η−ωt)

       

(25) 

� 

φ1(t,γ 0)

     ≅ R1d0

[(d0
2 + R1

2)(c 2 − v 2)]1/ 2 sin(γ 0 −ε0 −ωt)

      − vR1

c 2 − v 2 1− d0
2 + R1

2

c 2 − v 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/ 2

1− v
c
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−1

t
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

    ⋅sin(γ 0 −ε0 +α −ωt)

            

(26) 

� 

φ2 (t,γ 0)

     ≅ R2d0

[(d0
2 + R2

2)(c 2 − v 2)]1/ 2 sin(γ 0 −ε0 −η−ωt)

      − vR2

c 2 − v 2 1− d0
2 + R2

2

c 2 − v 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/ 2

1− v
c
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

−1

t
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

    ⋅sin(γ 0 −ε0 +α −η−ωt)

       (27) 

In Eq. (26), the factor in front of sin(

� 

γ 0 −ε0 +α −ωt ) is of the 
order 10-7 while the factor in front of sin(

� 

γ 0 −ε0 −ωt ) is of the 
order 10-2. Hence, the second term in Eq. (26) can be neglected 
expect when sin(

� 

γ 0 −ε0 +α −ωt ) is sufficiently larger than 

� 

sin(γ 0 −ε0 −ωt) . In an extreme case   

� 

γ 0 −ε0 = 0  and 

� 

α =90  

� 

 , the first term in Eq. (26) is zero at t=0. However, as t 
deviates sufficiently from 0, the first term will again dominate 
the second term. For example, if 

� 

t =10sec, the first term is 10 
times the second in Eq. (26). So, in instances when 
observation time interval 

� 

T1 +T2 is much larger 10 sec, the 
contribution of the second term in Eq. (26) to the Cramer-Rao 
lower bound will be negligibly small. The same conclusion 
can be drawn for the second term in Eq. (29). Hence, 
neglecting these terms results in the following approximation 
to the Cramer-Rao lower bound (Eq. (5)): 

� 

E ( ˆ γ 0 − γ 0)2[ ] ≥ 2R1
2d0

2

N1c
2 (d0

2 + R1
2)

⎡ 

⎣ 
⎢ 

                         ˙ s 2 t −φ1(t,γ 0)( )
−T1

T2∫
                          sin2 (γ 0 −ε0 −ωt)dt

                         + 2R2
2d0

2

N 2 (c 2 − v 2)(d0
2 + R2

2)
 

                        ˙ s 2 t −φ2 (t,γ 0)( )
−T1

T2∫
                         sin2 (γ 0 −ε0 −η−ωt)dt]−1

          

(28) 
where 

� 

φ1  and 

� 

φ2  are given by Eqs. (24) and (25) 
respectively. 
 Let us now compare Eq. (28) with Eq. (22) when 

� 

ω = v = 0 . 
From Eqs. (24) and (25) it can be seen that the dependence of 

� 

φ1 and 

� 

φ2  on 

� 

γ 0 is small. We may assume that 

� 

φ1 and 

� 

φ2 
are both essentially independent of 

� 

γ 0 in Eq. (28). So from 
the viewpoint of dependence on 

� 

γ 0, the essential difference in 
the structure of Eq. (28) to the structure of Eq. (22) is the 

� 

sin2 (γ 0 −ε0 −ωt)  and 

� 

sin2 (γ 0 −ε0 −η−ωt)  factors in the 
integrands in Eq. (28) versus the corresponding 

� 

sin2 (γ 0 −ε0)  
and 

� 

sin2 (γ 0 −ε0 −η)  factors in Eq. (22). Although the earth 
rotational angular velocity 

� 

ω = 7.27×10−5  rad/sec, for t=30 
minutes 

� 

ωt = 7.5   

� 

 . Hence this difference is certainly not 
negligible. This points out a significant contribution to the 
estimation performance due to the rotation of the stations. 
 To assess the dependence of Eq. (28) on the angular 
position

� 

γ 0  we assume that 

� 

φ1  and 

� 

φ2  are essentially 
independent of 

� 

γ 0 in Eq. (28). Under the assumption that 

� 

N1 = N 2  and 

� 

R1 = R2 , the integrand in Eq. (28) is directly 
proportional to  

� 

sin2 (γ 0 −ε0 −ωt) + sin2 (γ 0 −ε0 −η−ωt)
   = 1− cosη cos[2(γ 0 −ε0 −ωt) −η]

        (29) 

Comparing Eq. (29) to Eq. (23), we see that to a first order 
approximation, the conclusions regarding the dependence of 
performance on angular position 

� 

γ 0 −ε0  in the case 

� 

ω = v = 0still hold here. In particular, it is clear from Eq. (29) 
that from a viewpoint of uniformity of performance over a 
range of 

� 

γ 0, angular position near   

� 

η = 90  are desirable. 
 Finally, let us consider the effect of varying the observation 
duration 

� 

T1 +T2  on the optimum attainable estimation 
performance. We assume that 

� 

T1 +T2 is large compared to 10 
seconds and that the other parameters are given as in Eq. (17). 
Then Eq. (28) is again a varid approximation of Eq. (5) with 

� 

φ1 and 

� 

φ2  approximated by Eqs. (24) and (25), respectively. 
We also assume that the frequency of the ranging signal 

� 

s(t)  
is much higher than 1/

� 

(T1 +T2)  and also much higher than 

� 

ω / 2π (

� 

ω=rotational angular velocity of the stations). It is still 
difficult to assess the dependence of Eq. (28) on 

� 

T1 and 

� 

T2 
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in general because of the 

� 

sin2 (γ 0 −ε0 −ωt)  and 

� 

sin2 (γ 0 −ε0 −η−ωt)  terms in the integrals in Eq. (28). These 
terms change the value of the integrands as 

� 

T1 and 

� 

T2 are 
varied. To a first order approximation it appears that 
right-hand side of Eq. (28) is iversely proportional to 

 

� 

(T1 +T2) sin2 (γ 0 −ε0 −ωT2)[ − sin2 (γ 0 −ε0 +ωT1)

         + sin2 (γ 0 −ε0 −η−ωT2) − sin2 (γ 0 −ε0 −η+ωT1)]
  = (T1 +T2) 2− cosη cos[2({ γ 0 −ε0 −ωT2) −η]

       − cosη cos[2(γ 0 −ε0 +ωT1) −η]}

 

In the case when 

� 

η =90 (deg.), Eq. (30) reduces to 

� 

2(T1 +T2) . 
Thus, when 

� 

η ≅ 90 (deg.), the optimum attainable root mean 
square error performance is approximately inversely 
proportional to 

� 

(T1 +T2) . Finally, we consider a specific 
ranging signal 

� 

s(t)  and perform numerical computations of 
the Cramer-Rao lower bound. 
 
5. RESULT 
Consider a sinusoidal ranging signal of frequency 

� 

fc  Hz. 
That is , 
            

� 

s(t) = 2S cos(2

� 

πfc t ) 
Assume that for I=1,2, the demodulated ranging signal power 
to noise spectral density ratio is 
            

� 

S /Ni = 10  dB 
This signal-to-noise ratio is consistent with X-band carrier, 
20-dB spacecraft antenna gain and about 50 dB station antenna 
gains. And also, assume that 

           

� 

d = 9×108    km

R1 = R2 = 6.5×103    km
v = 10  km / sec

 

These parameters are consistent with that encountered in a 
Venus mission with ground-based stations. We also assume 
that

� 

T1 =T2. Numerical Monte Carlo integration was used to 
compute the values of signal frequency 

� 

fc  and observation 
time duration 

� 

T1 +T2. The numerical computations are within 
a 1% accuracy. 
The numerical results are summarized in Table 1 and 2 below. 
  The listed angle estimation accuracies in these tables are the 
square root of the Cramer-Rao lower bound. 
 Table 1 shows that the optimum angle estimation accuracy is 
inversely proportional to the frequency of the sinusoidal 
ranging. Signal. Although this particular relation between 
estimation accuracy and signal frequency does not hold in 
general, it can be easily seen from Eq. (5) that signals of 
higher frequency give a smaller Cramer-Rao bound. Also note 
that Table 2 shows that the estimation accuracy is 
approximately inversely proportional 

� 

T1 +T2 , as we would 
expect, since   

� 

η = 90 . 
 
 
 
 

Table 1   Estimation accuracy vs signal frequency 

 
Table 2   Estimation accuracy vs observation time  

 

 
Note that the above angle estimation accuracy was obtained 
usin the Cramer-Rao lower bound, Eq. (5) which is valid when 

� 

γ 0 is an unknown but nonrandom parameter. Suppose instead 
that 

� 

γ 0 is a random parameter and can a priori be assumed to 
be normally distributed. Then the relevant lower bound on 
mean square estimation error is Eq. (7). We claim that if the a 
priori variance of 

� 

γ 0 is much larger than the lower bound Eq. 
(5), then the above estimation accuracy calculation is still valid. 
This follows because Eq. (5) is essentially independent of 

� 

γ 0, 
in this case since   

� 

η = 90 . 
Hence, the expectation term in Eq. (7) is 1/(lower bound Eq. 
(5)). 
 
6. CONCLUSION 
 This work has considered the problem of estimating the 
angular position of a spacecraft using two rotating stations. 
The optimum attainable angle mean square estimation error 
was derived along with an implementable suboptimal 
estimation algorithm. 
A situation comparable to that encountered in a Venus mission 
was futher analyzed. In this situation it was shown that 
optimum angle between the two stations from a viewpoint of 
uniformity of estimation performance is   

� 

90. 
It was also shown that the optimum attainable estimation 
accuracy varies inversely with the distance of the stations from 
geocenter and approximately inversely with the square root of 
the observation time duration. 
The optimum attainable angular estimation accuracy was 
numerically computed for a sinusoidal ranging signal. 
These computations show that the optimum attainable 
estimation accuracy is 0.02 μrad for a 2Mhz signal and an 
observation time of one hour. 
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Signal frequency(fc) Optimum angle est. accuracy
2 MHz
5MHz

10 MHz
20 MHz

Obs. Time duration (T) Optimum angle est. accuracy
10 min
30 min
60 min
90 min
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