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Abstract

We propose an optimal trajectory design method in boundary value problem connecting two points on an elliptical
orbit. In Tschauner-Hempel equation, Attractive Set for optimal control based on the linear quadratic regulator theory is
considered. Attractive Set is defined as a set of all initial states for reaching a desired state with respect to a performance
index. Therefore, when an error is added to the velocity of the initial point, the characteristics of the performance index
for transitioning to the state of the original terminal point are clarified. This research is applied to the estimation of the
error correction amount of the trajectory transition to leave the moon and re-encounter the moon.

1. Introduction

Recently, a trajectory of spacecraft is sometimes de-
signed by the re-encounter problem of a target celestial
body and a spacecraft. Here, the target celestial body
refers to a celestial body orbiting around a central ce-
lestial body. When the Earth orbiting around the Sun is
considered, the Earth gravity assist method called ED-
VEGA was used in Hayabusa2 mission.1 This is a prob-
lem of trajectory design to re-encounter the Earth after
launched. Also, recently, the missions using the multiple
lunar gravity assist such as DESTINY+, EQUULEUS
have been considered. These trajectories are designed
by continuously connecting the orbits to re-encounter on
the Moon2.3 The trajectory used in re-encounter prob-
lem can be solved by the Lambert problem if assum-
ing Keplerian dynamics with the central celestial body.4

The solution of the Lambert problem gives velocities at
the initial point and the final point uniquely. However,
the initial velocity calculated by Lambert problem some-
times cannnot be used depending on launch conditions
and gravity assist conditions. Especially, to find a trajec-
tory using the multiple lunar gravity assist that satisfies
the patched conics method is difficult.5 If the transfer to
the final state generated by the Lambert trajectory has to
be achieved, the modification of the trajectory is neces-
sary during flight.

The relative motion of a satellite (follower) with re-
spect to the reference satellite (leader) in a circular orbit
is described by autonomous nonlinear differential equa-
tions. The linearized equations at the origin are known
as Hill-Clohessy-Wiltshire (HCW) equations.6 The in-
plane motion and the out-of plane motion are indepen-
dent. The latter is a simple sinusoidal motion. If the
reference orbit is elliptic, the equations of relative mo-
tion involve the true anomaly and the radius of the orbit,

which are periodic functions. The linearized equations
of motion at the origin are known as Tschauner-Hempel
(TH) equation.7 In many previous study, the characteris-
tics of the formation flight of the reference satellite and
the spacecraft and the solution of the encounter problem
are clarified by solving the optimal control problem in
the TH equation8.9

The trajectory of the spacecraft which has the dif-
ferent initial velocity from the Lambert trajectory can
be considered as the relative motion with respect to
the Lambert trajectory. Furthermore, the motion of the
spacecraft can be expressed as TH equations by lineariz-
ing around the Lambert trajectory. Under linearized as-
sumptions and a quadratic performance index, an attrac-
tive set is considered for optimal control based on linear
quadratic regulator theory.10 The attractive set is defined
as a set of all initial states that can reach the desired
state with a given optimal control cost forms an ellip-
soid. In the previous study, the attractive set is used for
the rendezvous problem from a periodic orbit on an el-
liptic orbit.11 This paper focuses on the attractive set
for the velocity space. The optimal control problem is
considered in the TH equation with the Lambert trajec-
tory as the reference elliptical orbit. Characteristics of
the attractive set in the velocity space is revealed and the
attractive set is applied to the trajectory design.

The paper is structured as follows. In section2, the
main theory including the generation of the attractive
set is indicated. In section3, the characteristics of the
attractive set and applications are stated as an example
of a transfer from the Moon to the Moon. Section4 gives
closing remarks.

2. Main Theory

In this section, the generation method of the refer-
ence elliptic orbit in order to solve the TH equation
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is reviewed. After that, the coordinate transformation
method from the inertial coordinate system to TH coor-
dinate system is stated and the method of generating the
attractive set based on the optimal control problem in the
TH equation is proposed.

2. 1 Generation of Reference Elliptic Orbit by Lam-
bert Problem

The target body which orbits around the central body
as a circular orbit is considered. It is assumed that the
spacecraft re-encounters the target body after departing
from the target body. If the two-body problem with the
central body is assumed, the trajectory of the spacecraft
becomes elliptical. Such a two-point boundary value
problem can be solved by the Lambert problem. In order
to be solved by the Lambert problem, the inertial coor-
dinate system centered the central body is defined. The
x-axis is the direction from the central body to the target
body at the initial point, y-axis is the direction of the ve-
locity of the target body and z-axis is the outward of the
orbital plane of the target body. The arguments of the
Lambert problem are the position vectors of the target
body at the initial point and the final point r1 and r2, and
the transfer time t between them expressed as:

r1 = [1, 0, 0]T (1)

r2 = [cos θ, sin θ, 0]T (2)

t = 2π + θ (3)

where, θ indicates the phase angle between r1 and r2.
The position vectors are nondimensionalized so that the
distance between the central body and the target body is
1, and the transfer time is nondimensionalized so that the
period of revolution is 2π. By using these, the velocities
of the spacecraft at initial point and final point can be ob-
tained and the trajectory can be decided uniquely. Fig.1
shows the trajectory generated by the Lambert problem
and in this paper this trajectory is assumed as the refer-
ence elliptic orbit. The angle θ1,θ2 from the periapsis rp

of the reference elliptic orbit to r1 and r2 are given as:

θ1 = cos−1(r1 · rp) (4)

θ2 = 2π − cos−1(r2 · rp) (5)

By using the distance of periapsis rp and the distance of
apoapsis ra, the semi major axis a and the eccentricity e
of the reference elliptic orbit are given as:

a = (ra + rp)/2 (6)

e = (ra − rp)/(ra + rp) (7)

2. 2 Equation of Motion in the TH Coordinate System
The radius of the reference elliptic orbit is r0 = p/(1+

e cos θ0). Where, p = a(1 − e2) is the semilatus rec-
tum, θ0 is the true anomaly. The period of the orbit is

Fig. 1: The reference elliptic orbit in the inertial coordi-
nate system

T = 2π(a2/µ)1/2. Newton’s equation in the two-body
problem yields:

r̈0 − r0θ̇
2
0 = −

µ

r3
0

(8)

r0θ̈0 + 2ṙ0θ̇0 = 0 (9)

When the relative state vector of the spacecraft
with respect to the reference elliptic orbit is rt =

[xt, yt, zt, ẋt, ẏt, żt]T is defined. This state vector is de-
fined in the TH coordinate system. The TH coordinate
system is defined as the state vector of the trajectory of
the Lambert problem centered with the x-axis is the ra-
dius direction, y-axis is the flight direction and z-axis is
the outward of the orbital plane of the trajectory of the
Lambert Problem. Newton’s equation can be divided
into three equations as the following equations:

ẍt − 2θ̇0ẏt − θ̈0yt − θ̇20 xt −
µ

r2
0

= − µ
r3

t
(x + r0) + ux

ÿt + 2θ̇0 ẋt + θ̈0 xt − θ̇20yt = −
µ

r3
t
yt + uy (10)

z̈t = −
µ

r3
t

z + uz

Where, u = [ux, uy, uz]T indicates inputs. The linearlized
equation of Equ.(10) at the origin is given as:

ẍt = 2θ̇0ẏt + θ̈0yt +

(
θ̇20 + 2

µ

r3
0

xt

)
+ ux

ÿt = −2θ̇0 ẋt − θ̈0 xt −
(
θ̇20 −

µ

r3
0

xt

)
+ uy (11)

z̈t = −
µ

r3
0

z + uz

These equations are called Tschauner-Hempel (TH)
equations. The state equation of Equ.(11) is given as:

ẋt = A(t)xt + Bu (12)

This document is provided by JAXA.



Here, A(t) and B indicate the linear time-varying system
matrix and the input matrix given by:

A(t) =



O3×3 I3×3

θ̇20 + 2 µ
r3
0
−2ṙ0

θ̇0
r0

0 0 2θ̇0 0

2ṙ0
θ̇0
r0

θ̇20 −
µ

r3
0

0 −2θ̇0 0 0

0 0 − µ
r3
0

0 0 0


B =

[
O3×3

I3×3

]
Here,

ṙ0 =
e sin θ0√
a(1 − e2)

θ̇0 =
1 + e cos θ0
r
√

a(1 − e2)

Fig. 2: Reference Elliptic and TH coordinate system

2. 3 Coordinate Transformation

In order to consider the relative motion of the space-
craft with respect to the trajectory of the Lambert prob-
lem, it is necessary to transform the coordinate system
from the inertial coordinate system to the TH coordinate
system. First, let ri and re be difined as the state vec-
tor, in the inertial coordinate system and in the reference
elliptic coordinate system, respectively.

xi = [xi, yi, zi, ẋi, ẏi, żi]T (13)

xe = [xe, ye, ze, ẋe, ẏe, że]T (14)

The reference elliptic coordinate system is defined as the
central body centered with the x-axis is the radius direc-
tion at periapsis, y-axis is the flight direction at periapsis
and z-axis is the outward of the orbital plane of refer-
ence elliptic orbit. Here, the rotation matrices about the

x,y and z axes by an angle θ are defined by the following
equations:

Rx(θ) =


1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (15)

Ry(θ) =


cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 (16)

Rz(θ) =


cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (17)

First, the transformation formula from the inertial coor-
dinate system to the reference elliptic coordinate system
is indicated as:

xe =

[
Rz(−θk) O3×3

O3×3 Rz(−θk)

] [
Rx(i) O3×3

O3×3 Rx(i)

]
xi (18)

Here, k = 1, 2 are the indexes that indicate the initial
point and the final point. When the velocity of the Lam-
bert trajectory at the initial point in the inertial coordi-
nate system is given as u = [vx, vy, vz]T , the inclination
of the reference elliptic orbit i in the inertial coordinate
system is given as;

i = tan−1

 vz√
v2x + v

2
y

 (19)

Next, the transformation formula from the reference el-
liptic coordinate system to the TH coordinate system is
indicated as:

xt =

[
R(θk) O3×3

O3×3 R(θk)

]
xe + ωk



0
0
0

−xe sin θk + ye cos θk
−ye sin θk + xe cos θk

0


+



−R0,k

0
0
−Ṙ0.k

0
0


Here, ωk indicate the magnitude of the angular velocity
of the reference elliptic orbit given as:

ωk =
1 + e cos θk√

a(1 − e2)
(20)

2. 4 Optimal Feedback Control
The optimal input is solved as the optimal control

problem with the fixed final state vector and time. In
this problem, the optimal control problem for minimiz-
ing the performance index J is considered.

J =
∫ t f

t0

(xT Qx + uT Ru) (21)

The optimal input for minimizing Equ.(21) is given as:

u∗ = −R−1BT {S (t)xW−1
0 UT

0 x0} (22)

This document is provided by JAXA.



Here, S ,U,W are the solution of Riccati equation given
as:

Ṡ = −S AT − S A + S BR−1BT S − Q

U̇ = −(AT − S BR−1BT )U (23)

Ẇ = UT BR−1BT U

The final conditions of Equ.(23) are given as:

S (t f ) = O6×6,U(t f ) = I6×6,W(t f ) = O6×6 (24)

By using Equ.(22), the minimum value of the perfor-
mance index is given as:

J∗ = xT
0 (S 0 − U0W−1

0 UT
0 )x0 (25)

Here, S 0,U0,W0 are the solution of Riccati equation,
and it depends only on the reference elliptic orbit.
Therefore, the performance index is expressed as n-
dimensional ellipsoid depending on the error of the ini-
tial velocity with respect to the initial velocity of the
Lambert trajectory. Hence, the attractive set is given as:

A(C) = {x0|xT
0 (S 0 − U0W−1

0 UT
0 )x0} ≤ C (26)

The optimal trajectory departing from the inside of this
ellipsoid is guaranteed that the performance index is less
than C. The major axis direction of this ellipsoid is
the initial velocity direction having the smallest perfor-
mance index with respect to the error magnitude(optimal
direction). On the other hand, the minor axis direction
is the initial velocity direction with the highest perfor-
mance index(worst direction). This direction is deter-
mined by the eigenvector of S 0 − U0W−1

0 UT
0 calculated

by Equ.(23), the eigenvector corresponding to the small-
est eigenvalue is the optimal direction, the eigenvector
corresponding to the largest eigenvalue is the worst di-
rection.

Fig. 3: Optimal direction and worst direction

3. Analysis

3. 1 Shape of Attractive Set

The shape of the attractive set for the initial velocity
of Lambert trajectory is discussed. In this analysis, the
example of the phase angle is θ =120 deg is considered
as the Lambert trajectory. Fig.4～Fig.6 show the attrac-
tive set, the optimal direction and the worst direction as
a contour, a blue arrow and a red arrow, respectively.
The contour indicates the performance index. If a veloc-
ity error from the initial velocity is inside the ellipse, the
trajectory can be modified below the energy indicated by
the ellipse. And, the optimal direction is the major axis
direction, the worst direction is the minor axis direction.
The optimal direction and the worst direction exist in
two opposite directions since the ellipse has symmetry.
The transition of the attractive set with respect to the
weight matrix Q is shown in the flow of Fig.4 to Fig.6.
As the weight matrix Q decreases, the shape of the at-
tractive set extends in the major axis direction. And,
the optimal direction and the worst direction are slightly
changing. In order to make this transition more visi-
ble, a numerical result of the transition shown in Fig.7
and Fig.8. Fig.7 shows the transition of the angle of
the optimal direction with respect to the weight matrix
Q. The angle of the optimal direction is defined as the
angle from the x-axis in the inertial coordinate system.
As the weight matrix Q decreases, the optimal direction
converges a constant value. Fig.8 show the transition
of the ratio of the maximum eigenvalue and the mini-
mum eigenvalue of the solution of Riccati equation with
respect to the weight matrix Q. As is the case with the
result of the optimal direction, the ratio converges a con-
stant value as the weight matrix Q decreases. It denotes
that the shape of the attractive set is fixed by controlling
to minimize energy consumption.

Fig. 4: Attractive set on the xy-plane(Q = 100)

This document is provided by JAXA.



Fig. 5: Attractive set on the zx-plane(Q = 10−4)

Fig. 6: Attractive set on the zx-plane(Q = 10−8)

Fig. 7: Transition of optimal direction angle with Q

3. 2 Application

In this section, the attractive set is applied to the
trajectory design using the multiple lunar gravity as-
sist (LGA). In order to design that, the patched conics
method is often used. In this method, the trajectories

Fig. 8: Transition of eigenvalue ratio with Q

before and after the LGA can be approximately con-
nectable if the magnitude of the velocities of these tra-
jectories with respect to the Moon are equal as shown in
Equ.(27). Here, let u−∞ and u+∞ be the velocities before
and after the LGA.

|u−∞| = |u+∞| (27)

However, it is difficult to find trajectories with the same
magnitude of u−∞ and u+∞. Therefore, it is assumed that
two trajectories whose magnitudes of u−∞ and u+∞ are not
equal are generated by the Lambert problem. Subse-
quently, u+∞ is changed so as to match the magnitude of
u−∞. The initial velocity with the minimum energy satis-
fies the constraint is determined by the attractive set.

Fig.9 show the trajectories whose magnitudes of u−∞
and u+∞ are not equal. The black lines indicate the trajec-
tories generated by the Lambert problem. The red line
indicates the orbit of the Moon. The magnitudes of u−∞
and u+∞ are 0.8215 km/s and 0.4940 km/s, respectively.

Fig. 9: Trajectory generated by Lambert Problem

Next, the attractive set around the direction of the ve-
locity of the trajectory after LGA is generated shown in

This document is provided by JAXA.



Fig.10. In Fig.10, the black short arrow indicates u+∞.
The black circle indicates the magnitudes of u−∞. If u+∞
is changed to the new velocity on the black circle, the
patched conics method is completed. The u+∞ that can
transfer to the final state of the Lambert trajectory with
minimum energy is selected from the black circle. The
new u+∞ which enables the transfer with minimum en-
ergy is the point at which the smallest ellipse is in con-
tact with the ellipse of the attractive set and the black
circle. The long arrow is selected as a new initial ve-
locity. It can minimize the energy consumption. The
trajectory with the minimum energy satisfying the con-
straint of the magnitude of u∞ is shown in Fig.11. It is
confirmed that the trajectory after the LGA is modified
in order to match the final state of the Lambert trajec-
tory.

Fig. 10: Attractive set around u+∞ satisfying the con-
straint of the magnitude of u−∞

Fig. 11: Trajectory with the minimum energy satisfying
the constraint of the magnitude of u−∞

4. Conclusion

This paper presents the characteristics of the attractive
set in the velocity space and application to the trajectory
design. The Lambert trajectory is generated and the at-
tractive set is considered around it. It is found that the
shape of the attractive set is fixed when the input weight
is large and the initial velocity and the worst direction
are almost parallel. This method is very useful to esti-
mate the direction of the initial velocity with minimum
energy even when used under more detailed assumptions
than Keplerian dynamics and the linear approximation.
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