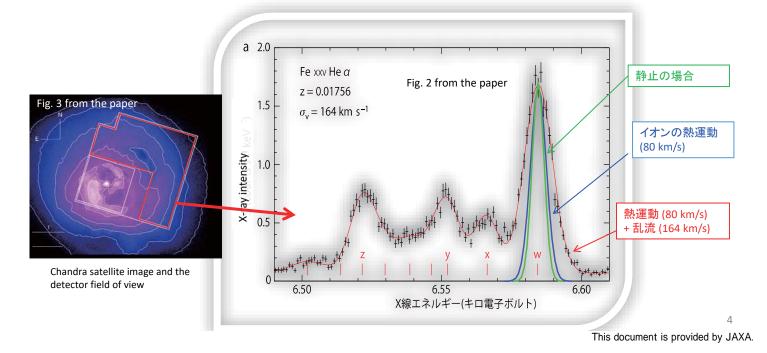

X線天文衛星代替機計画 の現状 「ひとみ」からXARMへ

埼玉大学・JAXA宇宙科学研究所 田代 信 XARM pre-project team

「異常事象」までに行われた初期観測

- ペルセウス座銀河団
- 超新星残骸 N132D
- 大質量連星系 IGR J16318-4848
- 超新星残骸 G21.5-0.9
- 孤立中性子星 RXJ 1856.5-3754
- 超新星残骸・中性子星パルサー Crab nebula

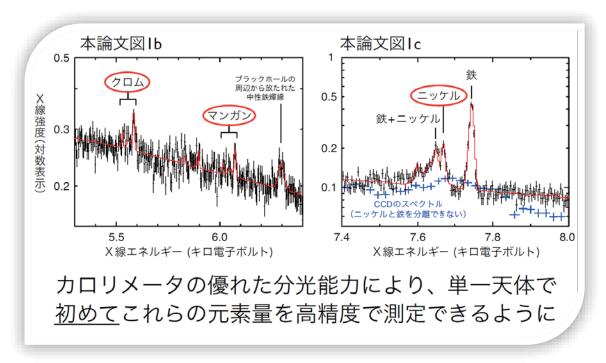
観測装置の立ち上げは正常にすすめられていた (ただしSXSのgate valveは未開放)

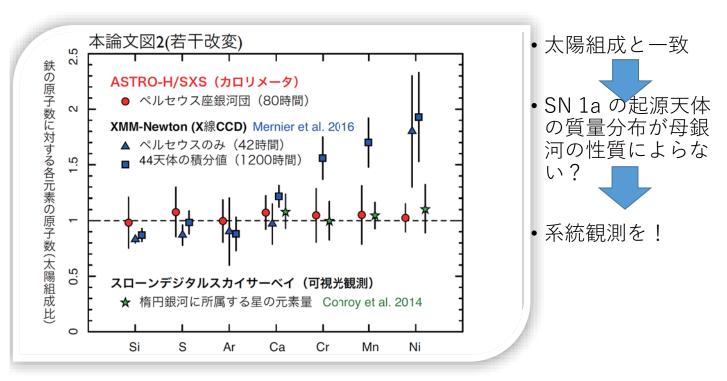


ひとみの成果(1)銀河団ガスの乱流

Hitomi collaboration, 2016, Nature, 535, 117

- SXSは、要求性能以上のエネルギー分解能を達成(~ 5eV)
- 銀河団ガス (intra-cluster medium) の速度を、10 30 km/s程度の精度で 測定!→AGNからの高速ジェット噴出にもかかわらず、


乱流のエネルギーは、熱エネルギーの4%に過ぎないことを発見。


ひとみの成果(2) 化学進化の起源

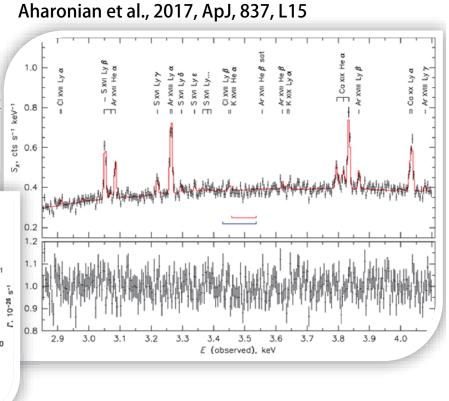
"Solar Abundance Ratios of the Iron-Peak Elements in the Perseus Cluster"

(Hitomi Collaboration 2017), Nature, on line, 2017-11-13

ひとみの成果(2) 宇宙の化学進化 Nature, on-line, 2017-11-14

ひとみの成果(3) 暗黒物質探査

• XMM-Newtonが示唆 した3.5 keV輝線 (sterile neutorino?)


• Suzakuの反論(Tamura et al)に加え、ひとみが強い上限をつけた

E (emitted), keV

MOS SXS-FOV

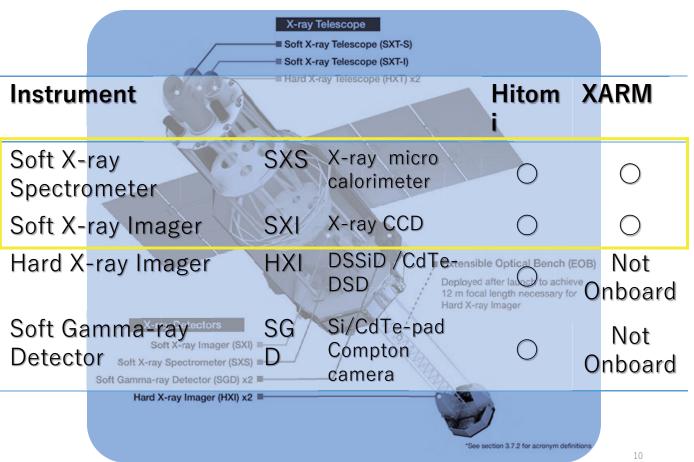
E (observed), keV

line flux, 10-5 phot cm-2 s-1

ひとみの成果(4) PASJ特集

title	Submitted author	statu s
Search for Thermal X-ray Features from the Crab nebula with Hitomi SXS	Tsujimoto	受理
In-flight Calibration of Hitomi Soft X-ray Spectrometer (1) Background	Kilbourne	受理
Hitomi X-ray studies of Giant Radio Pulses from the Crab pulsar	Terada	受理
In-orbit performance of the soft X-ray imaging system aboard Hitomi	Nakajima	受理
Measurements of resonant scattering in the Perseus cluster core with Hitomi SXS	Sato	受理
Atmospheric gas dynamics in the Perseus cluster observed with Hitomi	Ichinohe	受理
Hitomi Observation of Radio Galaxy NGC 1275: The First X-ray Microcalorimeter Spectroscopy of Fe-K α Line Emission from an Active Galactic Nucleus	Noda	受理
Glimpse of the highly obscured HMXB IGR J16318–4848 with Hitomi	Nakajima	受理
In-flight Calibration of Hitomi Soft X-ray Spectrometer (5) Point Spread Function	Maeda	受理
Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi	Sawada	受理
In-flight Calibration of Hitomi Soft X-ray Spectrometer (4) Effective Area	Tsujimoto	受理
Hitomi Observations of the LMC SNR N132D: Highly Redshifted X-ray Emission from Iron Ejecta	Miller	受理
Temperature Structure in the Perseus Cluster Core Observed with Hitomi	Nakashima	受理

X線天文衛星代替機 X-Ray Astronomy Recovery Mission

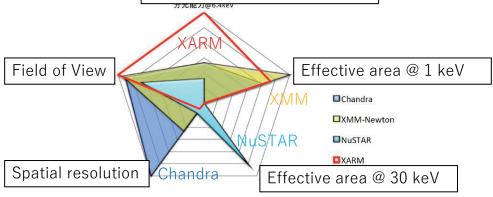

「ひとみ」異常事象を受けて…

- 根本原因にさかのぼる調査
- JAXA 機構改革(科学衛星の開発体制)
- ■「ひとみ」が垣間見せた新時代のX線天文学を 引き継ぐ

超高分解能X線分光 $E/\Delta E \sim 1000 (\Delta E < 7 eV @ 6keV).$

■「ひとみ」の国際協力を引き継ぐ
NASA, ESA, and international collaboration

Hitomi and XARM



10

XARM instruments

ポスター: P-134, 135 Tomida+ Terada+ 参照

Instrument	FOV/pix	ΔE (FWHM @6 keV)	Energ y band
Resolve (XMA + X-ray microcalorimeter)	2.9' □ / 6 x 6 pix	7 eV (goal 5 eV)	0.3 – 12 keV
Xtend (XMA + X-ray CCD)	38'	< 250 eV at EOL (< 200 eV at BOL)	0.4 – 13 keV

XARMの科学目的

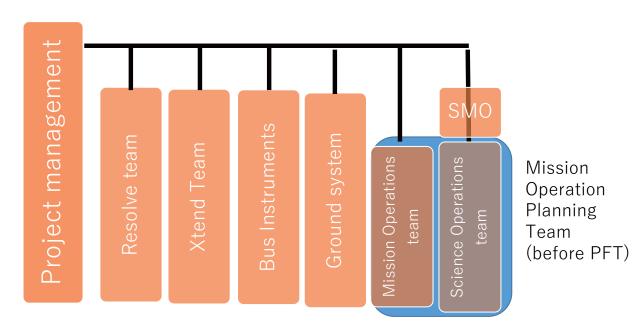
宇宙の高温プラズマにみる物質・エネルギーの生成および輸送過程と天体の進化の解明

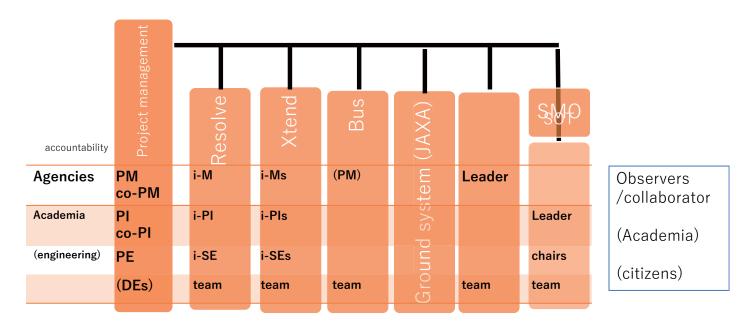
- ◉宇宙の大規模構造の形成メカニズムとは?
 - 何が重量に対抗して、銀河団の構造をつくり維持しているのか?
 - 圧力, 乱流(動圧), とそれらの空間分布
- •元素とエネルギーの生成・輸送
 - 元素合成 (超新星、超新星残骸)
 - 物質とエネルギーの散逸過程
 - 組成と散逸の速度(超新星残骸、銀河風、活動銀河核)
- •X線マイクロカロリメータによる新しい(宇宙)物理

International collaboration

Project management S/C, launcher, operation, SDC Resolve (DWR, CC, PSP, integ..), Xtend-SXI···

MOU (component level) MOU (mission level)




Project management Resolve (ApA, ADR, Xbox, XMA), Xtend-XMA, SDC

13

XARM team: sub teams structure

XARM team: responsibility and stakeholders

16

XARM計画 の現状

- ✓ JAXA, NASA, ESAとの基本合意(月例会議継続)
- ✓ ミッション定義、システム要求 (2017-04)
- ✓ プロジェクト準備審査 (2017-09)
- ✓ プリプロジェクト発足 (2017-11)
- ✓ 衛星システム提案要請
- ✓ 国内チームキックオフ会議 (2017-12)

(現在)

- □ 衛星システムメーカー選定 (2018初頭)
- ロ プロジェクト発足(2018春)→詳細設計・製造・試験
- □ 2020年代初頭の打ち上げ予定
- □ →立ち上げ運用(3-months), 試験観測(6-months)
- □ →観測提案に基づく運用