Io and magntospheric plasma interaction derived from the HISAKI observation

土屋史紀[1],吉岡和夫[2],鍵谷将人[1],木村智樹[3], 村上豪[4],山崎敦[4],三澤浩昭[1],笠羽康正[1], 吉川一朗[2],坂野井健[1],古賀亮一[1],荒川崚[1], 鈴木文晴[2],疋田伶奈[2] [1]Tohoku-U, [2]U Tokyo, [3]RIKEN, [4]ISAS

Brightness in IPT: dependence on relative position of lo

[Tsuchiya et al. 2015]

Brightness of IPT enhances just downstream of lo

10

Consistent with the Voyager result

Increase in hot electron population just downstream of lo

- Rapid heating of electron around lo
- Cooling of the electron with time scales of several hours

Background & Purpose of this study

- Unanswered question: Local electron heating process around lo Candidates:
 - (1) SO_2 ion cyclotron wave around lo
 - (2) Electron beam generated by Alfven wave at the foot of lo flux tube

lon cyclotron wave around lo by Galileo S/C (Russell et al. 2001)

- Here, we developed an emission model of Io plasm torus to assess
 - Longitudinal extent of electron heating region
 - Temperature and density of electrons heated

Emission model of lo plasma torus Equilibrium lo plasma torus (Eqs.(1) & (2))

tast neutrals $Total = 0.66 (eV cm^{-3} s^{-1})$ **Constant Electron density & Ion parameters** - Ne = 3000/cc, Ne,hot = 30/cc (1%)S 14% 5% ionization - Ion composition (Yoshioka+ 2014) O 3% pickup lons transport S 8% - Ion temperature: T=60eV (Bagenal 1994) 40% charge 6% Ambient thermal electron (Te~4-5eV) exchange O 15% $\frac{\partial T_e}{\partial t} = \sum_{\substack{\beta \\ \sim 2 \times 10^{-5} \text{ eV/s}}} v_e^{\beta/e} (T_\beta - T_e) + v_e^{h/e} (T_h - T_e) - \frac{2}{3} \sum_{\substack{\beta \\ \sim 1 \times 10^{-5} \text{ eV/s}}} \rho_\beta n_\beta$ (1) 29% i-e coupling inelastic <<1% collisions hot electrons (20% of source) (80% of source) (loss) Electrons 60% neutral Ambient hot electron (Th~200eV) on excitation $\frac{\partial T_h}{\partial t} = 0 \qquad (2)$ excitation <<1% 89% Hot electron injected around lo Delemere & Bagenal (2007)

$$\frac{\partial T_{h,Io}}{\partial t} = \sum_{\beta} v_e^{\beta/h} (T_{\beta} - T_{h,Io}) - v_e^{e/h} (T_{h,Io} - T_e) - \frac{2}{3} \sum_{\beta} \rho_{\beta} n_{\beta} \quad (3)$$

Emission model of lo plasma torus

lo plasma torus

Procedure

- (1) Equilibrium lo plasma torus with typical plasma parameters (density, temperature, composition)
- (2) Inject hot electron in the "heating region"
- (3) Solve relaxation process to find electron temperature distribution
- (4) Model emission distribution
 - & comparison with the HISAKI observation (SII 76.5nm, SII 126nm)

Relaxation processes Hot electron (lo) Coulomb interaction Thermal electron (T~5eV) Radiative cooling lon excitation) Radiative cooling lon excitation)

Th(io) dependence

Fixed parameters

- L= ±8R_{IO} (lo's corona)
- Nh(lo) = 20/cc (1% of ambient electron)

- Longitude at peak brightness depends on temperature of injected hot electron
- This corresponds to cooling time of the injected electron
 Th(io)~100K

Summary

- Local electron heating downstream of Io was found from the Voyager and HISAKI observation. Electron heating mechanism is still not resolved.
- Here, we developed an emission model of lo plasm torus associated with the lo phase effect to assess

(1) longitudinal extent of the heating region

(2) temperature and density of electrons heated

Comparison of the model result with the HISAKI observation suggests

- Th(io) ~ 100K, Nh(io) ~ 20/cc <--> Th=200eV, Nh=30/cc
- This could contribute a few tens % of total energy budget in the plasma torus
- Longitude extent of heating region is less than 30 deg.

Future work: Theoretical estimation of Th(io) & Nh(io)

lo phase dependence SII 765A & 1260A

[Tsuchiya et al. 2015]

- Brightness of IPT enhances downstream of Io
- Consistent with the Voyager result

Increase in hot electron population just downstream of Io and fast cooling of the electron (2-6 hours) accounts for the Io phase dependence of the torus brightness.

Spectral analysis

Thermal electron temperature vs Hot electron population

Observation is consistent with model-1 and explained by hot electron population.

[Tsuchiya et al. 2015]

Problems of the previous analyses

Is enhanced emission region extended behind lo related with

- Longitude extent of the heating region ? and / or
- Relaxation time scale of hot electron in corotating plasma flow in the plasma torus ?

Emission rate from plasma in lo plasma tous (Typical plasma composition & CHIANTI v8.0)

EUV spectroscopy is not sensitive to electron temperature for > 40 eV

Possible mechanisms of the hot electron production (1)Energy from trans-hemispheric electron beam

Power generated at lo

$$E_{Io} = -V_{Io} \times B_{Io}$$

$$J = 2R_{Io}E_{Io}\Sigma_A \left(\Sigma_A = \sqrt{\frac{\rho_{Io}}{\mu_0 B_{Io}^2}}\right)$$

$$P = 4R_{Io}^2 E_{Io}^2\Sigma_A \approx 1TW$$

- Possible scenario
 - Alfven wave generated at lo and transfer to low altitude along the field line
 - Electron acceleration at low altitude and generate transhemispheric electron beam (TEB)
 - Electron heating in IPT during the passage of the beam
- Based on energy transmission model by Hess+(2013), several fresh electron beams are needed to account for 140GW energy input to IPT.

Possible mechanisms of the hot electron production (2) Energy from SO_2 pickup ion through ICW

	Source rate (/s) *1	Mass input rate (kg/s)	Pickup energy (eV)	Energy input rate(TW)
SO ₂	8E+26(5%)	8.6E+01	1090	0.14
S	5E+27(32%)	2.7E+02	540	0.45
0	1E+28(63%)	2.7E+02	270	0.44
	100%	630kg/sec		1.0TW

*1: Based on the Galileo flyby of Io (J0) (Huddleston et al., 1998)

Does pick up energy of SO2 transfer to hot electron efficiently?

December 7, 1995 1737-1740 UT Fransverse Compressiona