第18回宇宙科学シンポジウム 2018年1月9-10日@宇宙科学研究所

たんぽぽ計画: 1年間宇宙曝露したアミノ酸関連試料の分析 Tanpopo Mission: Analysis of Amino Acid-Related Samples After 1 Years' Space Exposure

<u>小林憲正¹,</u>三田肇², 癸生川陽子¹, 中川和道³, 青木涼平¹, 原田拓¹, 三澤柊介¹, 佐藤智仁¹, 内藤敬介¹, 横尾卓哉¹, 峰松沙綾², 石山公啓³, 今井栄一⁴, 矢野創⁵, 橋本博文⁵, 横堀伸一⁶, 山岸明彦⁶, たんぽぽ研究チーム

¹横浜国大,²福岡工大,³神戸大,⁴長岡技科大,⁵JAXA/宇宙研,⁶東京薬大

Background

Organic Compounds for the Generation of Life: Exogenous Delivery by Interplanetary Dusts (IDPs)

Formation of amino

If primitive Earth atmosphere was not strongly reducing, endogenous production of organics (including amino acids) were restricted.

- Wide variety of organic compounds have been detected in extraterrestrial bodies [1]
- L-excesses of amino acids were observed in carbonaceous chondrites [2]

Extraterrestrial organics were essential for the generation of life on the Earth.

IDPs delivered more organics to to the Earth than meteorites and comets [3]
 IDPs delivered organics more safely than meteorite and comets
 This document is provided by JAXA.

Objectives of the Tanpopo Mission [4]

The Tanpopo Mission on the Exposed Facility of JEM, ISS

ExHAM

The Tanpopo Mission: Capture of Space Dusts And Exposure of Organic Compounds and Microbes in Space

*Amino acids and their precursors

Glycine

Hydantoin

Isovaline 5-Ethyl-5-methyl hydantoin

"CAW" (Complex amino acid precursors)[5]

Objectives:

- Microbe capture
- Microbe exposure
- Capture and Analysis of IDPs
- Exposure of organics*
- Development of new aerogel
- Monitoring of space debris

CAW (imaginary) and glycine This document is provided by JAXA.

Experimental (1)

Ground Simulations: Evaluation of stability of organics by irradiation

Туре	Compounds	Recovery (%)				
		UV***	γ-Rays	Heavy ions	Temperature	Total
Free amino acids	Glycine	0.002	100	100	100	0.002
	Isovaline	0.003	> 99	100	100	0.003
Amino acid precursors	Hydantoin	29	100	100	100	29
	EMHydantoin*	72	> 99	100	100	72
	CAW**	36	100	100	100	36

* 5-Ethyl-5-methyl Hydantoin

** Complex organics synthesized by proton irradiation of a mixture of CO, NH₃ and H₂O

*** $\lambda = 172 \text{ nm}$ (Exima lamp)

Space Experiments:

Launched in April, 2015

Space exposureReturned to the Earthstarted in May, 2015in August, 2016

Exposure plates after recovery This document is provided by JAXA.

Recovery of the Exposed Organics

- After exposed to solar UV, isovaline was decomposed as expected
- \checkmark Glycine's decomposition was less than expected.
- ✓ Hydantoins were decreased even in dark control.
- ✓ CAW was stable as expected.

Results (2)

By-Products after Exposure

- CAW was also stable in space as a precursor of alanine and β-alanine.
- A major photolysis product of isovaline was alanine in the laboratory simulation [6], while glycine was predominant after isovaline was exposed in space.

A: VUV/UV spectra of amino acids; B: VUV/UV spectrum of hexatriacontane $(C_{37}H_{74})$

- The reason why glycine's decomposition was less than expected seems to be:
 a) Hexatriacontane cut the shorter VUV (λ <160 nm) that is critical for glycine.
 b) UV dosimetry [7] showed that samples were exposed to solar UV for restricted period during exposure.
- 2. Hydantoins' recovery was much lower than glycine, even in the dark control. It seems to be due to volatility in space.
- 3. CAW had strong VUV/UV absorption, but still gave high recovery as amino acid precursors after solar UV-exposure. Complex precursors of amino acids could be robust molecules in space.
- 4. In the present space exposure experiment, solar UV whose wavelength was more than 160 nm was mainly used. Space experiments that utilize full solar VUV/UV spectrum should be done.

[1] K. Kvenvolden et al., Nature, 228, 923-926 (1970).

[2] G. J. Flynn, Earth Planets Space, 65, 1159–1166 (2013).

[3] C. Chyba and C. Sagan, *Nature*, **355**, 125-132 (1992).

- [4] A. Yamagishi et al, Trans. JSASS Space Tech., 7, Tk49-55 (2009).
- [5] Y. Takano et al., Appl. Phys. Lett., 84, 1410-1412 (2004).
- [6] P. Sarker et al., Int. J. Mol. Sci., 13, 1006-1017 (2012).
- [7] Y. Izumi *et al.*, *Orig. Life Evol. Biosph.*, **41**, 385-395 (2011).

- 1. The capture and exposure experiments in *the Tanpopo Mission* was designed to confirm the hypothesis that extraterrestrial organics played important roles in the generation of the first terrestrial life, as well as examination of the hypothesis of *Panspermia*.
- 2. The experiments started in May, 2015, and the first sample returned to the Earth in August, 2016. The last samples will return in 2018.
- 3. Amino acids and their precursors (hydantoins and CAW (complex molecules synthesized by proton irradiation of possible interstellar media)) were exposed in space in the Tanpopo Mission.
- 4. Amino acids and hydantoins showed different behavior in the space exposure experiments than expected from the ground simulation experiments.
- 5. CAW also showed high recovery after exposure. Contribution of extraterrestrial amino acid and/or their precursors to the first life on the Earth would become clearer in this experiment.

We acknowledge financial supports by

MEXT MINISTRY OF EDUCATION, CULTURE, SPORTS, SCIENCE AND TECHNOLOGY-JAPAN

文部科学省

This document is provided by JAXA.