

MeVガンマ線望遠鏡による2018年豪州気球実験の準備状況

吉川慶、谷森達、髙田淳史、水村好貴、古村翔太郎、岸本哲朗、竹村泰斗、谷口幹幸、中村優太、小野坂健、斎藤要、 黒澤俊介¹、身内賢太朗²、澤野達哉³、濱口健二⁴、窪秀利 京都大学、東北大学¹、神戸大学²、金沢大学³、メリーランド大学⁴

◆ 実験概要

1. MeVガンマ線天文学

```
COMPTEL/CGRO @1 - 30MeV
◆ 元素合成
  超新星残骸:元素合成のプロセスの解明
  銀河面(<sup>26</sup>Al, <sup>60</sup>Fe):元素拡散のトレース
◆ 粒子加速
  活動銀河核,ガンマ線バースト:放射機構の解明
  超新星残骸:宇宙線加速源の探査
                                       SPI/INTEGRAL <sup>26</sup>Al (1.8 MeV)
           (π<sub>o</sub>-decay or 逆コンプトン散乱)
◆ 遠方宇宙
  活動銀河核:銀河の進化への制限
  ガンマ線バースト:宇宙初期の星生成
                                …など
```


角度分解能が悪く、雑音除去が難しく、 感度が低いまま、進展がない

L. Bouchef et al., ApJ (2015)

©NASA

2018年4-5月放球予定

オーストラリア

4. SMILE-II+実験

目的

銀河中心

既知の明るい天体を利用した天体撮像能力の検証

(銀河中心陽電子・電子消滅線、かに星雲)

放球予定時間

Sun

1日程度の飛翔

外観

有効観測時間 各>5時間

hours from 00:00 on the launch days (in local time)

5σ以上で検出

総重量	470 kg
消費電力	190 W
主電源:二次電池 :一次電池	25.2V 390Ah 25.9V 100Ah
稼働可能時間	36.1時間 (0℃)
司令塔PC 1台、デ	ー夕取得PC 2台

2. 電子飛跡検出型コンプトンカメラ ETCC

gamma-ray (~2016年) Gas TPC GSO pixel scintillator array

散乱角決定精度 Angular Resolution Measure (ARM) 散乱平面決定精度 Scatter Plane Deviation (SPD) 反跳電子の方向決定精度に依存。従来法では、SPD=∞ Point Spread Function (PSF) 像の天空上での広がり。ARMとSPDの関数 PSFはSPDに大きく依存。SPDの改善で鋭いPSFを実現

SMILE-II ETCC コンプトン散乱を利用した望遠鏡

2種類の検出器で構成

・ガス飛跡検出器 反跳電子 エネルギーと方向 (従来法では方向を取得できない) ・位置有感シンチレーション検出器 散乱ガンマ線 エネルギーと吸収点 →コンプトン散乱の全物理量取得

1.45 m

クラッシュパッド

バラスト

◆ 検出器

0.7 m

ガンマ線事象以外の雑音除去

ガス飛跡検出器でエネルギー損失率を測定し、粒子識別 反跳電子の方向情報を用いたコンプトン運動学テスト → コンプトン散乱事象のみを選出

3. SMILE実験の全体計画

Sub-MeV/MeV gamma-ray Imaging Loaded-on-balloon Experiments

SMILE-I	2006年9月	10 cm角 Xe Ar 1気圧	気球高度で安定動作 他の観測と矛盾のないスペクトル
SMILE-II	地上実験	30 cm 角	豪州での既知天体の5σ以上検出に
	のみ	Ar 1気圧	向けて、有効面積拡大へ

SMILE-II+	2018年 4-5月予定	30 cm角 Ar 2気圧	PSF 有効面積 @ 662 keV ~10度 ~ 3 cm ² 明るい天体の観測で撮像能力の検証
SMILE-III		30 cm角×2 CF₄ 2気圧	~ 7度 ~10 cm ² 長期気球を用いた科学観測
衛星搭載 ETCC		50 cm角 CF4 3気圧	~ 2度 ~数百cm ² 全天観測

GEM (LCP 100 µm)

①底面シンチレータの厚み増加 13 mm (1放射長) → 26 mm ②ガス飛跡検出器の圧力向上 Ar 1気圧 \rightarrow Ar 2気圧 ③シンチレータをガス容器内部に導入 同量のシンチレータで隙間を削減 高エネルギー電子を測定可能に

ガス容器内に大量に物質を入れる ので、ガスの劣化が予想されたが、 ガス純化システム導入により30日 以上安定動作

α_{geo} = 92.5° α_{kin} = 91.6°

1798 keV

20 X [cm]

10

高エネルギー電子検出候補事象 30 cm角ガス飛跡検出器では、150 keV以上 の電子は止められず、>1 MeV以上のガンマ 線検出を制限していたが、ガス容器からはみ 出す電子を測定し、候補事象取得できた。

> 今後のスケジュール 実験装置の輸出 1/9 ・ ETCCの 性能評価 (実測データ、シミュレーション) ・バックグラウンド環境の推定 3/5 現地入り 3/27 放球リハーサル 4/1~5/6 実験期間