

IR2 : Six-hour movies on night side (13 AUG 2016 @ ~0.12 M km) 0 \quad r. Sctoh

IR2 ($1.735 \mu \mathrm{~m}$)
IR2 $(2.26 \mu \mathrm{~m})$

Clojd tracking "Day vs. night"
 comparison

Notable dates

OVOI-R1 (DEC 7, 2015)

- Period: 13 days, apocenter altitude: 0.44 million km
- VOI-R2 (DEC 20, 2015)
- Period: 10.5 days, apocenter altitude: 0.36 million km
- COMMENCE OF REGULAR OBSERVATIONS (APR 1, 2016)
- PC1 (APR 4, 2016)
- Period: 10.8 days, apocenter altitude: 0.37 million km
- SUPERIOR CONJUNCTION (JUN 7, 2016)
- Solar corona observation (RS)
- ONE VENUS YEAR IN ORBIT (JUL 19, 2016)
- ONE TERRESTRIAL YEAR IN ORBIT (DEC 7, 2016)

UVI compores SO_{2} and "unknown" absorber

2016/08/03, Pho: LLS

With $283-\mathrm{nm}$ and $365-\mathrm{nm}$ filters, UVI compares spatial distribution of albedos of SO_{2} and "unknown" UV absorber to study the transport of SO_{2}, relation to dynamics and cloud formation.

- Total number of pairs used: 387 periods: 2015-12-07 to 2016-08-11
- They compared albedo, which is the 'radiance factor' obtained by photometric correction using the Lambert and Lommel-Seeliger law.

An example of low correlation cases

2016/04/25, Pho: LLS

$0.05 \quad 0.07 \quad 0.09$

365 nm (13:17:16)

$\begin{array}{lll}0.4 & 0.5 & 0.7\end{array}$
C.Coeff. $=0.725$

- Both high and low correlation cases exist for the comparison between 283 and 365 nm images. In low correlation cases, we typically observe either of the following cases:
(1) dark 283 nm \& bright 365 nm over afternoon side
(2) bright 283 nm \& dark 365 nm over morning side
- The albedo used in these slides needs to be updated in the future study

作1: Imaging surface through clouds

$1.01 \mu \mathrm{~m}(\operatorname{Jan} 21,2016)$

This IR1 image at $1.01 \mu \mathrm{~m}$ demonstrates its ability to map thermal emissions from the surface.

Aphrodite terra appears an E-W elongated lowtemperature region, well compared to MAGELLAN altitude map. courtesy of T. Kouydma

IR2 $: 2.02-\mu \mathrm{m}$ dayside images for altimetry
T. Satoh, et al.

20160525_160821 $\left(\alpha=3^{\circ}\right)$

- Four representative phase angles (α) are chosen to demonstrate preliminary 2.02- $\mu \mathrm{m}$ cloud-top altimetry.
- Images acquired from near apoapsis are used for two reasons:
- To reduce the number of pixels (currently 200×200 pixels area is analyzed).
- To examine as wide background as possible for image deconvolution.

Cloud model

eloud models are rather simplified:

- A layer with 1.5 optical thickness aerosol over 10 km vertical extent. Each model is labeled with the altitude of the cloud optical thickness 0.9 (see figure)
- Above the cloud top is filled with tenuous haze.
- An adding-doubling code is used to compute multiply-reflected sunlight from Venus atmosphere.
- Absorption coefficients are pre-computed for each altitude layer.

Altitude [km]					
78	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$	$\tau=0.3$
	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$	$\tau=0.3$
76	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$	$\tau=0.3$	$\tau=0.3$
74	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$	$\tau=0.3$	$\tau=0.3$
72	$\tau=0.03$	$\tau=0.03$	$\tau=0.3$	$\tau=0.3$	$\tau=0.3$
70	$\tau=0.03$	$\tau=0.3$	$\tau=0.3$	$\tau=0.3$	$\tau=0.03$
68	$\tau=0.03$	$\tau=0.3$	$\tau=0.3$	$\tau=0.3$	$\tau=0.03$
66	$\tau=0.3$	$\tau=0.3$	$\tau=0.3$	$\tau=0.03$	$\tau=0.03$
64	$\tau=0.3$	$\tau=0.3$	$\tau=0.3$	$\tau=0.03$	$\tau=0.03$
62	$\tau=0.3$	$\tau=0.3$	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$
60	$\tau=0.3$	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$
	$\tau=0.3$	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$	$\tau=0.03$
	$\begin{gathered} \text { Model A } \\ (z=60 \mathrm{~km}) \end{gathered}$	$\begin{gathered} \text { Model B } \\ (z=64 \mathrm{~km}) \end{gathered}$	$\begin{gathered} \text { Model C } \\ (z=66 \mathrm{~km}) \end{gathered}$	$\begin{gathered} \text { Model D } \\ (z=70 \mathrm{~km}) \end{gathered}$	$\begin{gathered} \text { Model E } \\ (z=74 \mathrm{~km}) \end{gathered}$

Molecules:
CO_{2} (HITRAN, first 4)
N_{2} (HITRAN)
$\mathrm{H}_{2} \mathrm{O}$ (HITEMP, first 4)
HCl (HITRAN, first 4)

Wavenumber range:-) $4800-5100 \mathrm{~cm}^{-1}$

Line profile:
Voigt (cutoff at 120 cm

Comparison of the model and observation

- Every pixel in an image has:
- Observed brightness, and
- A set of scattering geometries (incidence angle, emission angle, and azimuthal angle).
- Observed brightness is compared with model brightness to estimate the cloud top altitude.

oDerived altitude maps

20160625_100821 $\left(\alpha=45^{\circ}\right)$

20160808_110821 ($\alpha=117^{\circ}$)

- For all 4 phase angles, almost consistent cloud top altitudes (nearly flat from the limb to the terminator) are derived. This may be indicating that the assumed upper cloud structure is adequate.
- Cloud top altitudes for polar regions vary from deeper (small α) to higher (large α) systematically, suggesting that the cloud structure for these regions may be somewhat inappropriate.

IR2 : Fine-resolution limb imaging (30 OCT 2016 @ ~8240 km)

Li 9A hưe oow-sho reor thernol feoture

Fukuhara et al., Huge stationary gravity wave in the Venus atmosphere , submitted to Nature Geoscience

First light after VOI-R1

- A huge bow-shaped thermal structure extending from the northern high latitudes to the southern high latitudes was found in the dayside afternoon sector.
- Its end-to-end distance is longer than $10,000 \mathrm{~km}$, and existed in the same region for 4 days at least.
- Its highest and lowest temperatures are 230-231 k and 225-226 k, respectively.
- Filament-like small bow-shaped structurgs are also identified in the lower latitudes.
M. Taguchi, T. Kouyama, et al.
yellow line: morning terminator

\bigcirc

High-pạss filtered

- longitude of the boundary between high and low temperature regions of the bow shape at the equator: $\lambda_{B} \approx 80^{\circ} \sim 84^{\circ}$
- angular velocity of the boundary: $\omega_{B} \approx 0.6 \pm 0.2[\mathrm{deg} / \mathrm{day}]$
- rotation speed of Venus to the sun: $\omega_{R} \approx-3.1$ [deg/day]
- the bow-shaped structure looks to befixed not to local time but on theground.

- A weak bow-shaped structure appeared around 200° in longitude above the eastern highland of Aphrodite terra on may 6.
- Two faint bows are identified ing April by in different longitudes and local times.

Bow-Shaped Structure in Jul./Aug.

Yellow line: morning terminator

- Another prominent bow-shaped structures appeared in late July, lasting to the end of August.
- Their centers were located around 90° and 130° in longitude above the western highlands of Aphrodite Jerra in the equatorial region.

Stationary feature events

O Same location with Same appearance

-Stationary feature events

Event date	Location (place name)	Confirmed Local time
$2015.12 .07-12.11$	Aphrodite Tera	$\sim 16 \mathrm{~h}$
2016.05 .06	Maat Mons	$\sim 15 \mathrm{~h}$
2016.05 .16	Theia Mons	$\sim 12 \mathrm{~h}$
$2016.07 .23-08.25$	Aphrodite Tera	$15 \mathrm{~h}-19 \mathrm{~h}$
2016.09 .05	Maat Mons	$\sim 17 \mathrm{~h}$

- These events mainly occurred above huge mountains in low latitudes
- Periodical: Same location has same feature-events at same local-time
=> Daily events of Venus
- The features became clearer in evening region.

100
200
300

RS: vertical scan of atmosphere

\bigcirc
T. Imamura \& H. Ando

Dawn (LT = 4.7-5.5)

Dusk (LT = 16.2-17.5)

LAC: Now ready to start lightning observation

- The instrument is quite healthy, and HV level has reached nominal level.
- Lightning has not detected yet.

FOV	16×16 deg
Lens	Single 25 mm diameter
Sensor	8×8 multi-anode SiAPD
Pixel size	$2 \mathrm{~mm} \times 2 \mathrm{~mm}$
Bit rate	10 bit /pixel for lightning
Sampling time	$32 \mu \mathrm{sec}$ sampling


```
2016/11/09 (not detected)
    20 min. exposure, HV = 280 V
2016-11-20 (under analysis)
    22 min. exposure, HV = 290 V
2016-12-01
    1 1 \mathrm { min } . \text { exposure, HV = 300 V (nominal)}
2016/08/02 (not detected)
    2.5 min. exposure, HV = 270 V
```

...

Summary

- AKATSUKI was successfully inserted in Venus orbit, and onboard science instruments are acquiring high-quality Venus data.
- Although the orbit is more elongated than envisioned, benefit of being in the equatorial plane to study dynamics is obvious.
- The science team expects to achieve all success criteria in the nominal mission period (the

2 July 2016@ 0.175-234 M km end of march 2018).

