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« OMOTENASHI is one of thirteen 6U CubeSats of NASA SLS/EM-1 Launch Trajectory
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« OMOTENASHTI will be the world first micro-Lunar lander
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 OMOTENASHI will reach the Moon with short period (about 4.7days)

« OMOTENASHI has a solid motor to decelerate itself just before the
Lunar impact and land on the Moon (semi-hard landing)

« The impact velocity is constrained under 30 m/s (TBD), but it is
strongly affected various sub-system and navigation errors.

Robust trajectory design is a major requirement  bus systems Deceleration Maneuver
for OMOTENASHI mission [ ]: Time after separation

-
» Transferring from SLS’s nominal flyby trajectory to shallow flight-path-angle
landing trajectory with DV1 at 1day after coasting.
* How to determine the DV1 and coasting time: “
e Structural restriction on velocity increment magnitude(< 20m/s) Touitig
« Trade-off analysis between fuel consumption, size of the feasible
landing region and Orbit Determination (OD) constraints
» Error analysis with fixed nominal DV1 profile at DV1 event:
« With fixed knowledge error at DV1 and fixed execution error of DV1
* Mapping these supposed errors with State Transition Matrix
« Evaluating failure cases (flyby and collision on the moon terrain while
flying) j
¢ High failure rate with performing DV1 only A
» Adding Trajectory Correction Maneuver (TCM) scenario
* Profile of TCM is determined by fixing the arrival time and position
* With fixed knowledge error at TCM and fixed execution error of TCM

Landing points and its Flight Path Angle on the Moon
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» Significantly reduce failure rate with adding TCM s s T T ” w7 o
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* Incoming shallow flight-path-angle Error sources

« Robustness to timing errors ¢ Position a.nd.velocit.y at ignition (Orbit Determination)

- . . . ¢ Thrust pointing (attitude)
» Robustness to velocity changes. Braking maneuver direction can be + Angle with local horizontal
adjusted to minimize vertical landing velocity *  Angle with local vertical

* Structural limit: Vignaing < 30 m/s * Spinaxis nutation

¢ Rocket engine performance
Specific impulse
Total AV

Thrust duration
Ignition timing

» Braking maneuver DV2 determined by fixing:
» Fixed altitude
» Zero vertical velocity
» Error analysis
» Thrust-local horizontal angle, position, and thrust duration errors
have the greatest impact
* Failures include Vignaing > 30 m/s and premature landings during braking
maneuver
+ Decreasing final altitude decreases Vignaing
* However it leads to more premature landings
» High-fidelity Moon topography is used to assess the lunar terrain
» SELENE mission data

Elevation [km]
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» Earth-Moon transfer phase
» Error sensitivity is evaluated. Especially, velocity knowledge error, delta-V execution error could make the spacecraft miss the Moon.
e The use of TCM is currently considered. However further study is still needed.
* The knowledge at DV2 is the most critical since the DV2 should be conducted at hundred of meters of altitude. DDOR is essential.

* Landing phase
* Robustness is evaluated considering various errors, high-fidelity Lunar topography.
* Current analysis shows reasonable success rate.

» Further study is needed to improve the dynamical system.
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