[P-154] 第17回 宇宙科学シンポジウム 2017/01/05-06

気球搭載型遠赤外線干渉計(FITE)干渉光学系の進捗報告

新干涉計調整機構

Current Progress in Optical Adjustment of Far-Infrared Interferometiric Telescope Experiment (FITE)

〇佐々木彩奈, 芝井 広, 伊藤哲司 大山照平, 大塚愛里梨, 谷 貴人, 須藤 淳, 住 貴宏, 松尾太郎(大阪大), 成田正直(宇宙研/JAXA)

我々は気球搭載型遠赤外線干渉計(Far-Infrared Interferometric Telescope Experiment: FITE)を 開発している。FITE はFizeau 型の2ビーム干渉計であり、2枚の軸外し放物面鏡で集光し、2ビー ムを焦点で干渉させる。このため、光学調整が重要な技術課題である。 現在、調整時の光学系評価手段としてシャックハルトマン波面センサーを用いて、2ビーム同時 測定・評価をする方法を開発している。シャックハルトマン波面センサーは、光学系から集光してき た波面の形状状態をハルトマンテストと比較して短時間で測定・解析可能であり、光学調整の効率 化(数日→数時間)が期待できる。また、2ビームの波面同時測定だけでなく、1ビームごとの波面 測定も可能な方法を考案し、シャックハルトマン波面センサーを用いた新しい放物面鏡調整方式 の概念の実証実験を行った。これに基づいて、新干渉計調整機構の光学系詳細設計を完了した。 現時点で、ハルトマンテストの結果から各ビームが結像性能1.5″をきっていることが分かってい る。2ビーム同時に調整を行うために、波面センサーの専用解析プログラムを作成し、プログラム が正常動作を行っているかを確認するため、人工的に光学収差を作成し作ったダミーデータによ

FITE干渉光学系と要求精度

FITEはFizeau型Michelson天体干渉計で、4枚の平面鏡と2枚の軸外しの放物面鏡から構成されている。私たちはFITEを気球に搭載し、高度35km上空で観測を行う予定である。FITEの基線長はファーストフライト時には8mあり、λ=150µmで4arcsecondの分解能を達成する[Shibai et al., 2010]。

図 1. (下)FITE望遠鏡構体 (右)干渉計システム

シャックハルトマン破面センサーを使用した新干渉計調整機構の原理実証を行い、1ビーム 波面解析モードと2ビーム同時の波面解析モードで切り替えてスポットイメージを得た[Sasaki et al., 2012]。実証実験に基づいて光学系概念図を考案し、干渉計調整機構の3次元CADイ メージを作成し、実機を組み立てた。

表 1. FITEの中間赤外線カメラ (λ = 25μm)で干渉縞を得る為の要求精度

1ビーム毎の波面位相誤差	λ/4(@25μm)
2ビームの結像性能	4.3″
2ビームの光路差	312.5μm

新干渉計調整機構光学系の解析プログラム概要とダミーデータ解析結果

組み立てた干渉計光学系を用いて、FITE実機でデータを取得した。取得したデータを人工的にズラしてダ ミーデータを作成することで、FITE干渉計専用の収差解析プログラムが正しく動作するか。確認を行った。

Z[1]:X方向傾斜 Z[3]:Y方向傾斜 Z[3]=-0.0 Z[3]:焦点外れ Z[4]=-0.0 Z[4]:非点収差(0,90度) Z[5]=-0.0 Z[5]:非点収差(±45度) Z[6]=0.00 Z[6]:コマ収差X方向+X方向傾斜 Z[7]=-0.0	$\begin{array}{c} Z[2] = 0.023[um] \\ Z[3] = 0.023[um] \\ Z[3] = 0.002[um] \\ Z[4] = 0.000[um] \\ Z[5] = 0.002[um] \\ Z[5] = 0.002[um] \\ Z[6] = 0.001[um] \\ Z[6] = 0.001[um] \\ Z[7] = 0.002[um] \\ Z[7] = 0.002[um] \end{array}$	Z[3] = 0.031[um] $Z[4] = -0.015[um]$ $Z[5] = 0.002[um]$ $Z[6] = -0.205[um]$ $Z[7] = -0.206[um]$	$Z_{odd j} = [2(n+1)]^{\frac{1}{2}} R_n^m(r) \sin m\theta \qquad fm \neq 0$ $Z_j = [(n+1)]^{\frac{1}{2}} R_n^m(r) \qquad m = 0$ $R_n^m(r) = \sum_{s=0}^{(n-m)/2} \frac{(-1)^s (n-s)!}{s! \left[\frac{(n+m)}{s} - s\right]! \left[\frac{n-m}{2} - s\right]!} r^{n-2s}$
$Z[7]: コマ収差Y方向+Y方向傾斜 Shack-Hartmann Optical Adjustment Wave front sensor System Optics f_m = 46.7mm f_a = 50mm$	10nmの単位で誤差が載る Off-axis Parabolic Mirror(1beam) f_p = 1560.97mm	ー次の収差についてのみ計算結果を載せる。 光学調整機構の合成焦点距離は、図7より、マイクロレンズアレイの 焦点距距離 f_m = 46.7 mm 、ダミーデータの移動量は $-40\mu m$ 、光学調 整機構の合成焦点距離は f_a = 50 mm 、FITE放物面鏡の焦点距離は f_p = 1560.97 mm なので、放物面鏡の傾斜 θ_P は、	ここで、nはradial degree, mはazimuthal frequencyを表す。 Wをr成分と $ heta$ 成分に分け、測定量を φ_i 、zernike係数を a_j として、 zernike多項式で展開すると、 $\varphi_i(r) = \sum_{i=1}^N a_j Z_j(r_i) i = 1, 2,, M,$
pixels shift -40μm ・ ・ ・ 参照面画像のスポット座標 × 被検面画像のスポット座標	図7. 一次の収差をもつダミーデータ(図6) が表す光学系の概要図。センサー上で Y方向に-40µm意図的に移動させた結 果、解析プログラムで出力された値に Z[2]=-1.17[um]となった。この結果 は、FITE干渉光学系で鏡が参照面と 比べてY方向にΔ=-1.17[um]傾いてい ることを意味する。このΔの値が、計 算結果と一致すれば、解析プログラム は正常に動作していると確認できる。	$\theta_{p} = \frac{f_{a} \cdot -40[\mu m]}{f_{m} \cdot f_{p}} = -2.74 \times 10^{-5} rad$ 1ビームの半径はR= 180mmであることから、鏡の端を原点として 放物面鏡が θ_{p} 傾いているとすると、原点からもっとも離れた鏡の端で のズレ量Δは、 $\Delta = \theta_{p} \cdot R = -4.93 \times 10^{-3} mm \sim -5 \mu m$ 干渉計調整機構では被検面である放物面鏡を2回反射した波面を測 定しているので、波面の変位は鏡の変位の4倍となる。これを考慮に いれると、求めたい鏡の変位量 Δ_{p} は、 $\Delta_{p} = \frac{-5 \mu m}{4} = 1.23 \mu m$ この値は、解析ソフトを通して出力されたZ[2]の値Z[2] = -1.17[um]と ほぼ一致している。	Nは展開する次数によって決まる数(3次までの収差を求める場合、 N=9), Mはデータ点の数×2である。この式を行列形式で書き直すと、 $\pmb{\phi} = \pmb{Z} a$ 一般に、未知数であるN個のzernike係数よりも、M個の方程式の数(スポット数の2倍)の方が多いので、最小二乗法を使用して係数を求める と、 $\Delta = \sum_{i=1}^{M} [a_j Z_j(r_i) - \varphi_i]^2$ 最小二乗解は、次の行列計算形式で求めることができ、 $z^T Z a = z^T \Phi$ $a = (z^T Z)^{-1} z^T \Phi$

This document is provided by JAXA.