SOLAR-C

第16回 宇宙科学シンポジウム P-109

次期太陽観測衛星SOLAR-C用可視光イメージスライサーの開発

Development of Image Slicer Unit for SOLAR-C Optical Telescope

末松芳法(国立天文台), 斎藤洸輔, 小山祐嗣, 榎田弓貴也, 大倉幸伸, 中保友直, 助川隆(CANON), SOLAR-C WG Y. Suematsu (NAOJ), K. Saito, M. Koyama, Y. Enokida, Y. Okura, T. Nakayasu, T. Sukegawa (Canon), SOLAR-C WG

擬似瞳鏡の仕様とプロトタイプ製作結果

・本面分光装置は、1つの分光器で通常のスリット分光と面分光を可動機構無し で両立し、宇宙用ということで 最小限のコンパクトな光学系を実現することを特 徴とする。

mirror array of 3 columns times 5 rows (right

panel).

(three pseudo slits) focused by the pseudo pupil

100 200 300 -300 -200 -100 -100 -200 0 100 300 0 distance (micron) distance (micron)

> ・このため1つのスライ サー鏡の幅は、スリット幅として許容できる30µm(0.18 秒角相当)(長さ1.58mm)と非常に狭く(マイクロスライサーと呼ぶ)、面精度の 良いガラス研磨では実現できないものである。できるだけ広い視野を確保するた め、スライサーを45枚配置し、高精度で異なる反射角設定を実現する必要があ る

(視野:8秒角×9.5秒角)。

・キヤノンの一体切削加工技術により、可視光(紫外でも)観測に使用できる面 粗度1.3 nm rms以下の高性能金属鏡マイクロイメージスライサーユニットと軸 外しコニック面からなる瞳鏡(1鏡の大きさ10mm×20mm、3列×15行)ユニット が実現できる目処が立った。

• very small micro roughness < 1.3 nm rms, • sharp edges $< 0.2 \mu m$ for width 30 μm , • surface figure errors < 59 nm PV • mirror tilt errors < 10 arcsec

全属鏡 保護膜付 長コーティング	試験項目	試験内容	使用試験設備	反射率 変化	テープテス ト(Canon)	合?
	温度サイク ル	温度幅-25℃~ +65℃で50サイクル	国立天文台 ALMA恒温槽LH41-15P	変化なし	ОК	0
『宙仕様試験	湿度	湿度95%、温度40℃ に48時間放置	キヤノン 恒温槽	変化なし	ОК	0
	真空曝し	真空度 10-4[Pa]	キヤノン 真空チャンバー	変化なし	ОК	0
	放射線	加速電圧:1MV×電 流:0.4mA、照射窓 下20cm、コンベア速 度:5.07m/minで 1pass当たり1kGyの	放射線利用振興協会· 高崎事業所 電子加速器(1号加速 器)	変化なし	ОК	0
≧属鏡に保護膜銀コーティングを行った →ンプルを用い、右表の試験を実施、試 輸後の反射率変化とテープテストによ		表面ドーズ値。 5pass繰り返しで 5kGy照射				
、問題ないことを確認した。試験内容 「ひので」の金属鏡コーティングで用 いたものに準拠している。	紫外線照射	照射強度: 2~3 SC 総照射量: 1867 ESH	宇宙科学研究所 太刀川研·紫外線照射 設備	変化なし	ОК	0
こ 属鏡に保護膜銀コーティングを行った ンプルを用い、右表の試験を実施、試 前後の反射率変化とテープテストによ 、問題ないことを確認した。試験内容 「ひので」の金属鏡コーティングで用 いたものに準拠している。	紫外線照射	表面ドーズ値。 5pass繰り返しで 5kGy照射 照射強度: 2~3 SC 総照射量: 1867 ESH	宇宙科学研究所 太刀川研·紫外線照射 設備	変化なし	ОК	0

(熱サイクル後も変化なし)

エッジは0.1um以下で形成

マイクロスライサーの銀コーティングについては、 温度サイクル試験を実施し、走査型電子顕微鏡

観察により、コーティングの剥がれがないことを確

右図: 軽量化擬似瞳 鏡ユニットの試作。重 量850g。アルミ基板に 45枚の軸外しコニック 面を一体形成後、保護 膜付銀コーティングを 成膜。NewView及び3 次元測定で、面粗度く 1.3 nm rms、面精度< 59 nm PV、ティルト角 誤差<4.6秒角の結果 を得ている。 成膜によりエッジは丸みを帯 びるものの0.2um程度