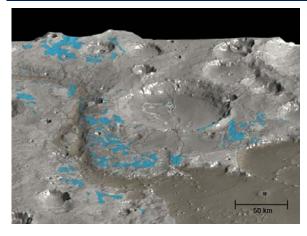

火星大気散逸観測オービター の検討

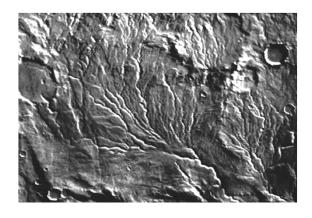
火星気候変動の謎:二酸化炭素と水の行方を探る

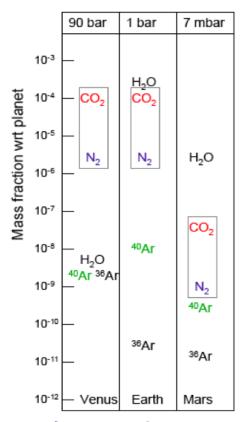

火星大気散逸探査(のぞみ後継機)検討WG

科学目的

火星気候変動の謎:二酸化炭素と水の行方を探る

過去の火星気候変動を示唆する観測

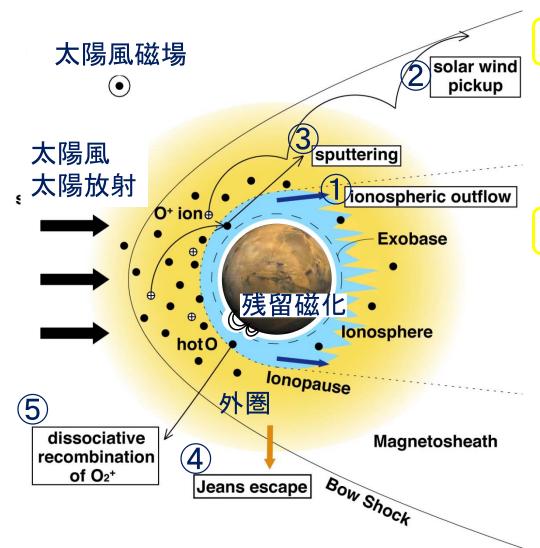

二酸化炭素と水の行方に関する理解の必要性



含水鉱物の分布 (MEX)

- 40億年前には安定した水に長時間さらされた痕跡
- 35億年前には酸性の水 による洪水を示唆

過去に液体の水が存在したことを示唆する 地質学上の痕跡


金星 地球 火星 の組成重量比 [Chassefiere et al., 2006]

電離圏イオン流出の候補メカニズム

大気散逸の鍵を握る ケルビン・ヘルムホルツ不安定 冷たいイオンの流出 磁気再結合: フラックスロープ 100 惑星間空間磁場の 電離圏への侵入 惑星周辺の宇宙空間における プラズマ(電離気体)と電磁場の直接観測が重要: 日本では、GEOTAIL、あけぼのなどの実績あり。 「のぞみ」は、火星でのプラズマ総合観測を目指していた。

非磁化惑星からの大気散逸機構

CO2の散逸に重要な低エネルギー粒子の散逸機構に特化

南北比較観測による残留磁化の効果

①電離圏イオン流出

Δ

CO。+散逸

②イオンピックアップ

×

③スパッタリング

X

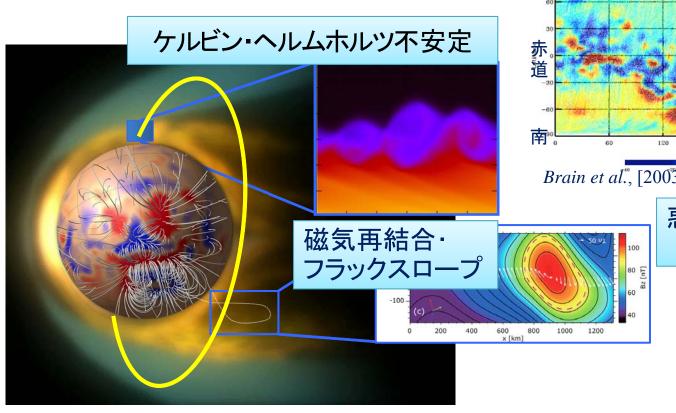
4ジーンズ流出

- X
- ⑤光化学反応による流出
- Δ

X

⑥その他の流出機構

太陽風が駆動する機構 (源である電離圏は太陽放射 にも左右される):

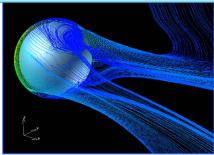

1,2,3

太陽放射が駆動する機構(外圏からの流出):

4,5

大気散逸への残留磁化の影響と観測戦略

南半球に集中した局所的な地殻起源の磁場



Martian Vector Magnetic Field at 400 km

100
5-00
120
180
240
300
360

Brain et al., [2003], Gonnerney et al., [2001]

惑星間空間磁場の電離圏への侵入

対立する残留磁化の大気散逸への影響の主張:

- ◆ オーロラ帯での加速、大規模フラックスロープなどで大 気散逸を増加させる
- ◆ ミニ磁気圏を形成し、電離圏への太陽風侵入を軽減、 大気散逸を減少させる

南北両半球の違いを見やすい、 高軌道傾斜角の 軌道をとる

発展性: 太陽系外惑星の理解へ

火星大気散逸(大気進化) 機構の解明

イオンピックアップ(電離圏イオン流出)

スパッタリング、太陽風ボンバーメント

光化学反応ジーンズ流出

他惑星の大気進化と多様性、ハビタブル惑星の理解へ

太陽系惑星 太陽系外惑星

大気を保有する条件は? 生命惑星成立の条件は? 〈星:~40億年の表層環境 進化の歴史が残る惑星

弱い風化作用

地形

鉱物

クレータ年代学
火星隕石

火星サンプル(同位体比)

6

科学目的と達成目標

ミッションの目標と意義

「火星気候変動の謎:二酸化炭素と水の行方を探る」

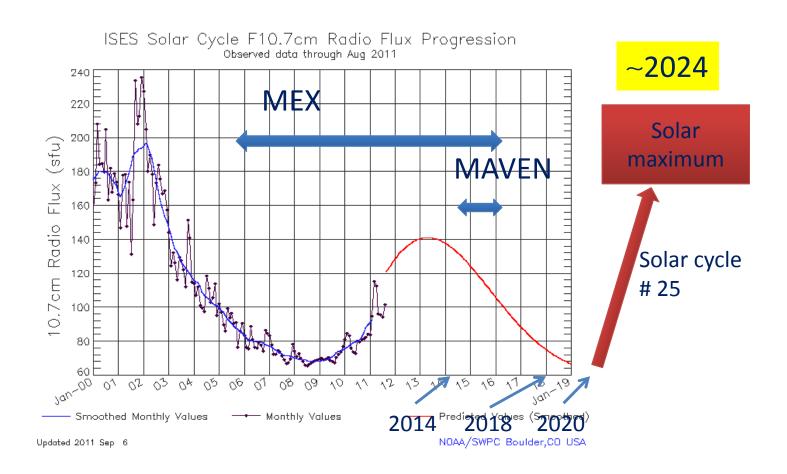
- 達成目標 I:
 - 惑星起源の低エネルギー粒子の散逸機構と残留磁化の影響 を明らかにする
- 達成目標Ⅱ:

各大気散逸機構の太陽風·太陽放射変動への応答を明らかにし、大 気散逸が気候変動に果たした役割を理解する

- 達成目標Ⅲ:
 - 水と二酸化炭素の各総散逸率を明らかにする
- 達成目標Ⅳ:

大気の上下結合が大気散逸率におよぼす影響を明らかにする

物理メカニズムの切り分けに向けて


メカニズム名	付随する特徴的な現象	観測項目
K-H不安定	磁場、イオン速度、圧力の周期的な変動 flowの過加速(渦の巻き上がり) プラズマ混合層(2成分プラズマ) プラズマの剥離(プラズマ雲放出, flux ropes)?	・イオノポーズ付近での電離 大気の2次元空間構造・イオノポーズ付近でのイオン の分布関数・電子による境界層同定・磁場、プラズマ波動
Kinetic Alfven Wave (KAW)	沿磁力線電子ビーム、 Ti perp/Ti para>1 Alfven resonance 内向きポインティング東 unmagnetized ions and transport	・背景磁場、プラズマ波動 ・イオン温度 ・電子による境界層同定
磁気再結合	Diffusion region関係の特徴的構造 (Hall磁場構造、current sheet bifurcation, 波動強度増加, Alfvenic jets, 沿磁力線ビーム) プラズマの剥離(FTE, プラズマ雲 放出, flux ropes)?	・イオノポーズ付近での電離 大気の2次元空間構造 ・イオノポーズ付近でのイオン と電子の分布関数 ・磁場、プラズマ波動

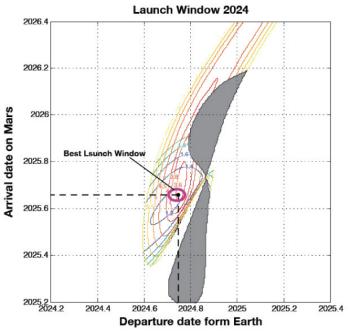
物理メカニズムの切り分けに向けて(つづき)

メカニズム名	付随する特徴的な現象	例
磁気異常 + ミニ磁気圏	電子の降り込み、反射 plasma void(電子フラックス減少) electron flux spikes 昼間側Ionopause高度の上昇 TAI 上向きイオンビーム 磁気リコネクション, flux rope	MGSの電子観測: Mitchell et al., 2001 MEXの粒子観測: Dubinin et al., 2009 Brain et al., 2010 Nilsson et al., 2007
ドレーピング / 電場侵入	イオン加速(エネルギーが距離に 比例。電場加速?) (イオンエネルギー、電場、磁場、 電子エネルギー、Auger電子)	MEXの粒子観測: Dubinin et al., 2006 Nilsson et al., 2012

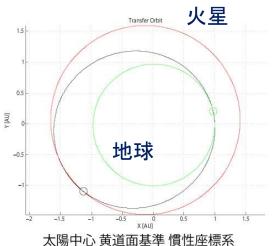
ミッション実施時期

過去への演繹のためには、太陽活動の変動が大きい太陽活動極大期(2024年頃)をミッション期間に含むことが望ましい。

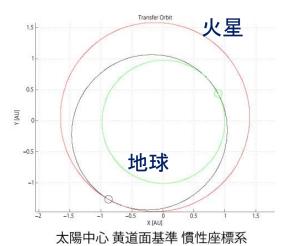
Potential Launch Dates


- Observation during a solar active period (2024-2025) further improves the accuracy of estimation of atmospheric escape backward in time (ancient days)
- Launch during the window in Sep. 2024 and Oct.
 2026 brings good advantage of the weight.

	Launch Date	Arrival at Mars	Launched Maximum Mass
Nominal	2024/9/27	2025/8/22	1800kg (v∞=3.7km/s)
Backup	2026/10/20	2027/8/23	1960kg (v∞=3.3km/s)


火星までの航行軌道

2024年(ノミナル)および2026年(バックアップ)の打ち上げウィンドウに対し、最も打ち上げ条件の良い日および軌道が計算されている。以下に結果を示す。


	打ち上げ日	火星到着日	打ち上げ可能重量(kg)
ノミナル	2024/9/27	2025/8/22	1800kg (v∞=3.7km/s)
バックアップ	2026/10/20	2027/8/23	1960kg (v∞=3.3km/s)

2024年打ち上げのケースにおける、地球出発時 v∞(暖色)、火星周回軌道 投入Δv(寒色)の等高線(単位はkm/s)

2024/9/27 打ち上げの場合の航行軌道

2026/10/20 打ち上げ の場合の航行軌道

本オプション案採用時のミッション要求の概要

達成目標	ミッション要求	本計画の特徴	必要となる手段
I. 惑星起源の低	大気散逸の全体像と詳細特性	世界初のクローズアップ撮像を	親機を適切な軌道(高軌道傾斜
エネルギー粒子の	を捉えることにより、大気散逸	実現し、その場観測を組み合わ	角、遠火点地方時固定)に投入
散逸機構と残留磁	機構を同定する。特に南北両半	せた3-D観測を行うことにより、	する。
化の影響を明らか	球を比較し、残留磁化の影響を	低エネルギー粒子の散逸メカニ	親機の一周回で撮像とその場
にする。	調べる。	ズムを同定。宇宙で普遍的なプ	の観測モ―ド切り替えを行う。
	(観測対象:電離圏イオン流	ラズマ物理機構理解の深化に	CUC(クローズアップカメラ)によ
	出、光化学反応による中性大	も貢献。	る散逸大気の撮像(迷光除去、
	気流出)		衛星姿勢ポインティング)。
Ⅱ. 各大気散逸機	火星軌道での太陽風・太陽放	MAVENまでの「統計的描像」か	子機による太陽風および太陽
構の太陽風・太陽	射モニター観測を、大気散逸観	ら極端現象も記述できる「瞬時	放射モニター観測。
放射変動への応	測と同時に実施する。	描像」への質的変換を達成。観	親機については、科学目的達
答を明らかにし、	(観測対象:Iの大気散逸観測、	測に基づく過去の推定に不可	成に必要なデータの選択的ダ
大気散逸が気候	火星軌道での太陽風、太陽	欠なブレークスルーをもたらす。	ウンリンク。
変動に果たした役	X/EUV放射)		
割を理解する。			
Ⅲ. 水と二酸化炭	C, N, Oを含む全成分を分離し、	N₂⁺とCO⁺など従来ミッションで弁	科学目的達成に必要なデータ
素の各総散逸率	水と二酸化炭素の散逸率を独	別できなかった成分まで分離	の選択的ダウンリンク。
を明らかにする。	立に観測する	し、気候変動の議論に重要な温	
	(観測対象:C, N, Oを含むイオ	室効果ガスと水の散逸量を分	
	ン成分および中性大気成分)	別して推定可能とする。	
Ⅳ. 大気の上下結	下層大気から外圏底への物	大気重力波等で駆動される大	科学目的達成に必要なデータ
合が大気散逸率	質輸送に関わる諸パラメータ	気の上下結合による大気散逸	の選択的ダウンリンク。
におよぼす影響を	の定点観測	への影響を世界で初めて観測。	
明らかにする。	(観測対象:大気重力波、表層	CO₂などの重い分子の流出へ	
	ダスト3次元分布)	の寄与を推定可能とする。	

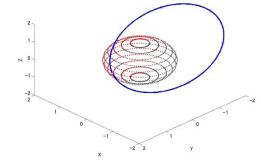
軌道詳細計画検討

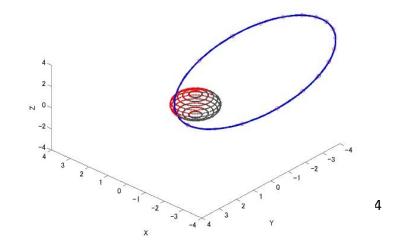
衛星Aの軌道条件

- ◆近火点高度150 km付近
- ◆軌道周期 4.92H(自転周期の1/5)
- ◆遠火点高度 3.0R_M以上
- ◆近火点・遠火点の地方時をほぼ固定
- ◆朝夕子午線付近がその場観測領域
- ◆真昼の子午線付近が撮像領域

→近火点高度150 km付近 遠火点高度 3.1 RM

→軌道傾斜角 110°

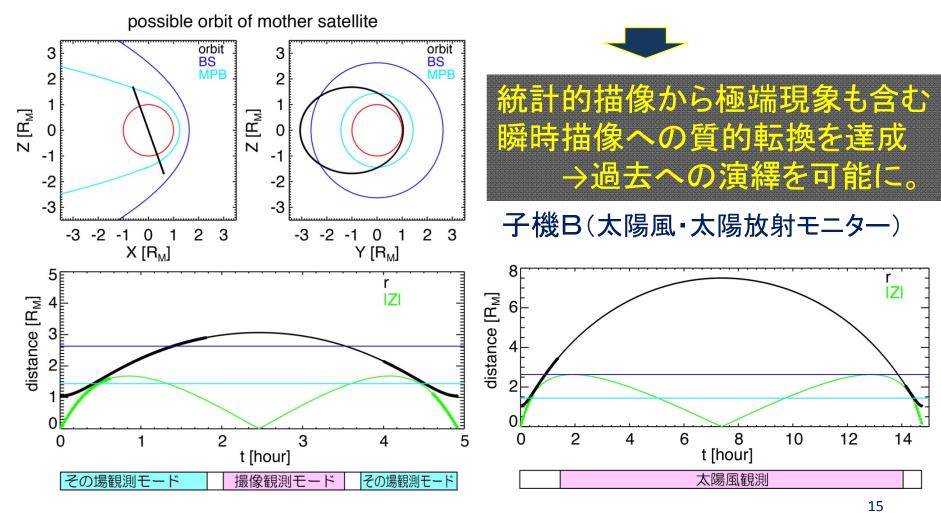

→近火点地方時:18H付近


遠火点地方時:6H付近

衛星Bの軌道条件

◆(シースも含めた)太陽風領域にいる 期間がミッション期間の75%以上であること

概念設計で用いた 暫定モデル軌道 [左] 衛星A、 [右] 衛星B



ミッションの特徴と想定軌道

親機A (大気散逸の撮像 および直接観測)

- 撮像で全体像を把握し、その場観測と 組み合わせて物理機構を解明する
- 太陽風・太陽放射変動と大気散逸機構 を同時に観測し、太陽変動応答を把握

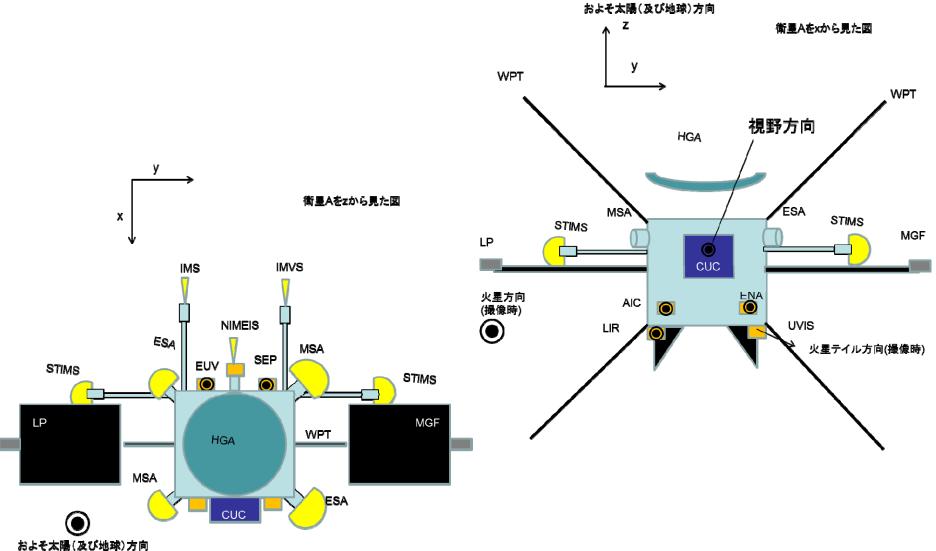
衛星システム検討

昨年度のシステム検討の入力情報のうち、新たなプロジェクト構成 に従って下線の項目をアップデートする

システム要求条件

- ①プロジェクト構成(衛星構成、打ち上げロケット)
- ②ミッションシナリオ(打ち上げおよび火星到着日、巡航軌道、火星周回 軌道、必要ΔV量)
- ③技術要求(ミッションライフ、環境条件、機械環境、放射線環境、火星 大気モデル(原子状酸素密度を含む)、Fault Tolerance, PA)
- ④必要なリソースとマージン量(ペイロード重量、サイズ、重心位置、ペイロード電力)
- ⑤構造条件(ペイロード視野条件、迷光・反射光の制約)
- ⑥電気的条件(ペイロード2次電源、表面導電性、ポテンシャルコントロールに必要な構造、EMC要求)
- ⑦姿勢条件(ポインティング精度要求、姿勢決定要求)
- ⑧熱的条件(ペイロード発熱量、性能維持温度範囲及び保存温度範囲)
- ⑨運用条件(ペイロードデータ量、ペイロード運用、想定運用シナリオ)
- ⑩通信条件(地上局の想定、オカルテーション、軌道決定精度要求)
- ①開発及び試験スケジュール

設計項目


- ◆外観図
- ◆視野制限を要する機器(観測機器、姿勢センサーなど)の視野
- ◆重量
- ◆電力収支
- ◆熱収支
- ◆通信
- ◆システム機器の諸元
- ◆実現のための技術的課題
- ◆コスト ⇒ 中型計画の枠に入る ことを確認

搭載観測機器

従来の 構成 構成 構成

磁場(DC)計測器 電場・波動計測パッケージ 衛星A • プラズマ・中性粒子計測パッケージ 親衛星A ラングミュアプローブ • クローズアップカメラ • 全体撮像機器 • 赤外カメラ 大気光撮像カメラ 衛星B • 超高安定発振器 • 太陽EUV放射量計測器 • 太陽風観測器 子衛星B

機器配置•視野案

