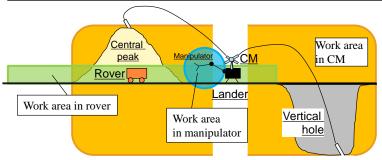


P-127 月火星の縦孔・地下空洞探査(UZUME)計画の てきシステム検討

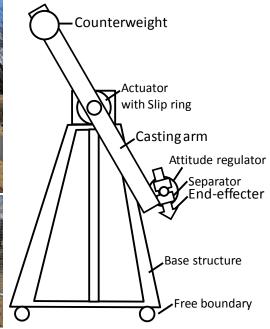

大槻真嗣(JAXA), 有隅仁(産総研), 河野功(JAXA), 春山純一(JAXA)

月惑星探査プローブシステム

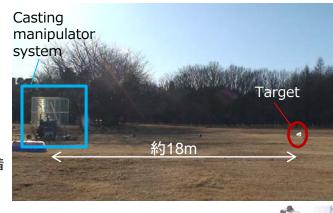
・目的地点へ早く到達するだけでなく, 人間でも行く ことが難しい領域を探査可能なプローブが求められて おり、その一つの候補が投てきシステム

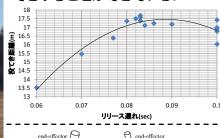
Optimal probes		Operation time		
		Short	Middle	Long
Range		< a hour	< a day	≥ a day
Short	< 2m	Manipulator	Manipulator	Rover
Middle	< 300 m	Casting	Casting	Rover
Long	$\geq 300\mathbf{m}$	Plane*	Plane*	Rover

☑投てきシステムによる探査シナリオ


- pitch
 - 着陸機上から展開
 - 方位と姿勢をまっすぐに
 - 投てき回転運動
 - 被投てき物のリリースと ワイヤ装着
 - ワイヤ制御で被投てき物の 位置と姿勢を制御
 - 到着と衝撃吸収動作
 - ミッション
 - ワイヤで引き上げ
 - 掃除(レゴリス除去)と再装着
 - -夕吸い上げ, 充電
 - 繰り返し探査(ワイヤなしで どんどん投げ込むことも想定)

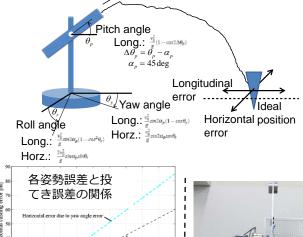
投てきシステム

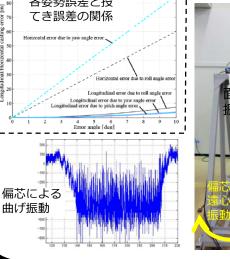

図実験装置 ・回転して物を投てきするシステムを開発している



☑屋外での投てき試験

被投てき物の例(カメラユニット)

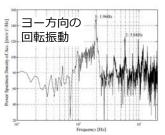

・合計32回の投てき試験を行い, 投てき距離18m(月面で108mの 投てき距離) を解析的に計算され る飛距離に対して1%の誤差で投 てきすることができている.



ワイヤ結合機構/ラチェットリ

0-0

投てきシステムの課題


位置決め精度の改善

制御精度はリリース時 の姿勢に大きく依存する. 特にロール, ヨー方向の 目標姿勢とのずれは大き な投てき誤差要因となる

ワイヤ投てき型プローブ システムの課題

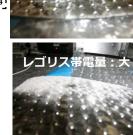
距離延長に伴うアーム 回転速度の増加と偏芯の 影響で,面内外方向へ生 ずる振動の抑制が必要

投てき距離の延長

被投てき物の <u>衝撃抑制と姿勢制御</u>

被投てき物へワイヤを 取り付け,繰り出し制御 で着地時の衝撃や飛翔時

の姿勢制御が必要


月や惑星の過酷な環境 に耐えられる機能が必要. 例えば,耐熱性,耐粉塵 性などが必要

耐環境性の向上

耐熱性モータ

(ローバユニット)

-質量の同時投てきとワイ

ヤ制御による衝撃加速度の抑制

レゴリスの静電誘導によ るアルミ面への付着

This document is provided by JAXA