宇宙ダストの形成過程の解明に向けた S-520観測ロケットによる微小重力実験

木村勇気	北海道大学
石塚紳之介	北海道大学
中坪俊一	北海道大学
齋藤史明	北海道大学
山崎智也	北海道大学
左近樹	東京大学
竹内伸介	ISAS
稲富裕光	ISAS

(165) 第16回宇宙科学シンポジウム、宇宙研、2016年1月7日

Importance of cosmic dust

Building block of planetary system.

Alycia J. Weinberger, Nature 433,114-115, 2005.

Substrate for molecular formation.

N. Watanabe, A. Kouchi, *Prog. Surf. Sci.*, 83, 439-489, 2008. J. A. Nuth, N. M. Johnson, *Science*, 336, 424-425, 2012.

Energy transducer in the interstellar and circumstellar environment.

P. F. Roche, et. al., *Nature* 337, 533-535, 1989. J. E. Felten, E. Dwek, *Nature* 339, 123-125, 1989

Key player for efficient star formation

L. J. Tacconi, et al., *Nature* 463, 781-784, 2010. C. F. McKee, *Science* 333, 1227-1228,2011.

137億年の宇宙史における、分子、鉱物 粒子(ダスト)、惑星、そして生命へとつなが る有機物の形成過程や変遷を、物質科学 の視点から理解する。そして、物理、化学 の素過程に立脚した揺ぎ無い宇宙物質の 創成史を確立する。

目標達成には、
・ナノ粒子特有の物性、現象の理解
・微小重力実験
が必須!

Lee, et al., Nanotechnology, 20 (2009) 475706.

核生成理論によるダスト生成の見積り $J=\alpha \exp[-(16\pi\gamma^3 v^2) / (3\Delta\mu^2 kT)]$

α:付着確率*γ*:表面自由エネルギー

D The Λ value of μ G experiment is 10⁴.

熱対流で、そもそも、宇宙での物質形成を 地上実験で理解できるのか!?

最境で起る

<u>
意義</u>:
星間物質進化のスタート地点である、晩期型巨星で生成するダストの核生成過程が解明される。 ダスト形成を伴う様々な天体現象の観測データと組み合わせて、恒星風の化学組成や密度、温度環境 など、様々な物理・化学パラメータを厳密に決定できるようになり、当該分野に革新的な寄与を与えられ る。また、宇宙ダストの核生成理論に対する実験検証ができ、宇宙における物質進化の理解において、 最初のマイルストーンとしての役割を担う。