

JUICE-JAPAN WG木星衛星探查計画 ーJUICE-GALA-レーザ高度計-

並木則行1,小林正規2,木村淳3,荒木博志1,野田寛大1,鹿島伸悟1,宇都宮真4,石橋高2,押上祥子1,小林進悟5, 。 最井指之⁶, H. Hussmann⁷, K. Lingenauber⁷, J. Oberst⁷

1. GALAレーザ高度計の概要/科学目標

レーザ高度計はレーザ光の飛行時間から距離を計測する装置である.GALAレーザ高度計は、トランシーバユニット(TRU)、制御(制御・時間計測・インターフェース)ユニット(ELU)、レーザ電子回路ユニット (LEU)の3ユニットで構成され,日本チームはTRUの中の反射光受信部(受信光学系および検出器)を担当する.全体のインテグレーションは,DLR(ドイツ航空宇宙センター)が担当する.2019年に日本からDLR に納入され、2022年にArian Vにより打上げられる。2030年に木星に到着し、2032年からガニメデ周回軌道に投入される。4ヶ月の高度500km周回ミッション期間中には、ガニメデの形状変化などを測定する。

		科学要求	補助データ・較正・解析	性能要求(提案書表3)	機器パフォーマンス	設計要求(太字は要求値,その他は目標値)	
1.1.IUICEの科字目的とGALA	1.2.IUICEサイエンスへの盲献	[1] 潮汐観測からの要求	補足A(1)	[1]レーザ高度計性能	[A] SNR	[a] LHU	DLR分打
		地下海なし(変形量0.1~0.5 m)と	: XO解析による軌道	▲域(アルベド高い)で2 m以下	$\delta \alpha_{\rm N} / \alpha_{\rm N} > 1/{\rm SNR}^{1/2}$	pulse energy > 17 mJ	
		あり(2.5 [~] 3.8 m)を区別	→ 決定精度の向上	全球で5 m以下(ミニマムサクセス)	δσ' > 2σ'/√3/SNR ^{1/2}	pulse width 5.5 ± TBD ns	
「地球以外に生叩を伯9大将は仔仕9るのか?」	「して」の「「して」の「して」の「「して」の「「「」」では「「」」では「「」」です。	[12] 回転変動計測	₩₩.EA(2)	▶ [1 2] 隙間のないサンプリング	全球でSNR ^{1/2} > 5 振動 振動(高アルベド域)でSNR ^{1/2} > 65	pulse repetition rate = $75 \pm TBD Hz$ wavelength = 1064 nm	
				→ 送光周波数 30 Hz		optical efficiency (EOL) > 0.9	
大見玄の大氷衛見でけ丰富下に会球的た液休園"地下海"の左右がテ	ボイジャーやガリレオ探杏機は観測領域の表面カバー率が悪く 空間			Footprint size 50 m 補足A(5)		→e ⁻² beam divergence < 0.05 mrad	
不生不の人不闻生では衣眉下に主体的な液体眉 地下海 の行在の小			ポテンシャル	[1.3] 反射シグナルの幅	(N _{II} の影響は小さい)		
唆されている しかし地下海の存在は従来データの解釈や停証にもと	解像度にも大きな小均質がある(図1.2). 氷大体への初となるレーザ	[I] 表面地形の観測 [II 1] 線状地形(rift, graben)の形状	Love数の推定	「時間分解能 10 ns以下	▲ 補足F	[b.1] Alignment budget (RSS sum < 0.1 mr ; Platform jitter < 0.011 mrad	ad) 🗲
		例graben:高さ~100 m		[1.4] アルベド分解能		T× optical path distortion < 0.03√2 mra	ıd bi
づく可能性に過ぎず. この存否を確認することは惑星科学/宇宙生命科	測距を通して全球的に一様かつ局い空間解像度で地形の定重情報を取	幅 ~1 km		20 %以下		Tx/Rx optical paths alignment < 0.05√2 Optical bench distortions < 0.01√3 mra	. mrad
	但ナスニレズ 回うげ地港世がニナキ西抗正県から人球膨正県レスの	[I.2] クレータのmorphology変化		[1.5] 観測機器共同運用	Worst condition @ 500 km	Rx optical path distortion < 0.03√2 mra	d
字の菆里安課題でめる.	「行9ることで、例えば地海市が不9衣山払強里から主球膨強里とての」			JANUSカメラとの共同観測	Nominal condition @ 1000 km	(値はTBD)	補足G
	麻中(内部) 一年亦化わ流休水(地下海)の田化県) た日中オーレが中	補足				[b.2] Receiver Optics	
	歴史(四回通反変して液体小(地下海)の回心里)を元山9CCハ山	 [亚] 表面roughness測定		[2] S/C建用(追測·姿勢制御) [2.1] XO points	└→ [C] HIC output > detection limit (9 mV) (類似品から)	Aperture diameter > 250 mm Field of view (half cone) = 0.225 (TBC)) mrad
	来るようになる。	[皿.1] 表面ラフネス推定が無い		> 10 ⁵ 個		Telescope efficiency (EOL) > 0.85	
		3 m (TBD) の精度で測定		Attainable for / < 85 deg	LDJ 集光性能 ●= 0.8 mm (類似品から)のピンホール	Filter transmission (EOL) > 0.8 Filter band pass < 5 nm	
人工街星と玉休表面問の測 <u>距によって</u> 多様な地形形能と分布が把握	の主声の判ちとフルズド		▶ DEMとの協調	[2.2] 軌道間距離	に光線が収まること (ΔT<15℃)	→ 波面収差 < 2/4 rms (類似品から)	
	☑衣囲り組ぐとブルハト	[Ⅳ]アルベトマッフの1作版 [Ⅳ.1] 0.2-0.7, 平均0.44		<10 km 11 (10 km) 11		III祖さくち nm rms (現以品から)	日本分
でき 氷主体の 地質活動 様式の 理解を 通して 地球の プレート・テクト		4段階(TBD)以上の区分		□→ [2.3] 斜方視による観測点の均一化 地向時度 < 0.0% 通見 0 (4)	[E]リソース制約 (TBC) 新見(フーンアック的単純シュール (****)	[b.3] Detector	
	アルペドとノットノリント中の表面フノネス(粗さ, すなわち, 数m以			16四相反 (V.5* TTTAEA(4)	重重(マーンジ/AX916kシールドなし) 望遠鏡 1.2 kg	gain = 10-160 (16 steps)	

ニクスの冉考祭にも繋がる。また木星から受ける固体潮汐の大きさ 回転変動を測定することで、地下海の存否が推定できる.

図1.1 ガニメデ内部に地下海が存 在する場合,公転における真近 点離角の違いによって, 氷地殻 には潮汐変形が起こる.

図1.2 ガリレオ探査機搭載Solid State Imaging system が取得したガニメデ表 面画像の解像度.

上の高度変化)は反射パルスの幅からを計測される.ただし、原理的 に両者は区別できない画像データ等の独立なデータを使って両者を分 離すれば.過去の構造地質活動と数メートルサイズの表面の粗さとの 関係などが明らかになる.

③重力場精度向上につながる軌道決定精度向上 地下海が存在する場合の潮汐ラブ数kっは0.6に,完全凍結の場合は0.06 になる.地下海が存在すれば氷地殻の厚みや剛性率に応じて0.01の桁 で変化するので、k2の観測からガニメデ内部構造を制約できる.

④ 潮汐変形のデータ

地下海がない場合の表面の潮汐変位量はpeak-to-peakで約0.1-0.4 mであ るのに対し、地下海が存在する場合のそれは約5-7 mである. この相 違は極付近での地形の周期変動として有意に観測可能であり、取得し た変位量からガニメデ内部の熱進化史にも大きな制約が与えられる.

⑤ 回転変動

ガニメデ内部に球殻状に地下海が存在する場合には氷地殻とマントル が力学的に分離する.他方で、秤動の振幅は氷地殻の厚さに強く依存 . 地下海と氷地殻の密度差が0-400 kg/m3の範囲では振幅は15-355 mに 達する(氷地殻厚を0.5 - 25 kmと仮定). この振幅を観測することができ れば、④の変位量と組み合わせて解析することで、地下海の深さと氷 地殻の厚さを分離することができるようになる.

1.3.開発の課題(かぐやLALT, はやぶさ LIDARとの相違点)

. 低温環境:常温で製造し,-100~-80℃の低温環境で性能を出すため の評価試験を繰り返す必要がある.

2. アライメント要求:従来に比べて1桁厳しくなり,測定の限界に近 い. BELAのLessons Learnedを取り込む必要がある.

3. モデルの数:かぐやLALTでは、EPMとFMの2モデルであったのに 対して,JUICE-GALAでは、ESA/PIとの調整により、STM、EM、 VM、EQM、FM、FSの6モデルを開発する.

4. PA/QA要求への対応:従来はJAXA/ISAS基準適用であったが、今回 はESA基準となり、PA要求の基準が高くなる.

2. GALA光学系開発

探査機の画像から見出した

ガニメデのクレーター直径

一深さ関係(Schenk, 2002)

主鏡はDLRからの要請にそって∲ 300 mmとし, 焦点距離は1.5 mとして設計を進めている. 課題は(A) 検出 |器部(FPA)の耐放射線シールドのサイズと重量を抑えることと、(B) 主鏡に非軸対称な温度ムラが生じない| ような熱構造設計を行うことである.以下に現状の設計ベースラインを要約する.

3. GALA電気系開発

GALAアナログエレキモジュール(AEM)の開発項目はAPD-HIC(宇宙実績,耐放射線性,センサのゲイン安 定)とAEM(EMC対策, RFMとの高速I/F)である.

2.1. 光学ベースライン検討

2.1.1. 主鏡材料はアルミ

主鏡材料に関しては(i) アルミ切削鏡を用いて望遠鏡全体を同一材料で作る相似収縮方式, (ii) ガラス鏡を 用いる低膨張・低コスト方式, さらに(iii) 部品によって異なる材料を組み合わせるハイブリッド方式, の 3案についてトレードオフを行った.科学目標からのフロー(図1.4)に遡って検討し,

- (1) 望遠鏡の波面精度要求を大幅に緩和する ($\lambda/10 \text{ rms} \rightarrow \lambda/4 \text{ rms}, \lambda = 633 \text{ nm}$)
- (2) 鏡面粗さの要求を大幅に緩和する(4 nm Ra → 10 nm rms)
- ことが可能であると判断し、金属鏡による望遠鏡をベースラインとすることとした.
- 2.1.2 主鏡・副鏡は自然冷却がノミナル

3.1.1. 宇宙実績:長期間ミッションであり,高い信頼性が要求される.

宇宙用Lidarの実績が多数あるExcelitas社(旧PerkinElmer)のものを採用.かぐや.はやぶさ2.BELAで も実績あり、MIL-PRF-38534、MIL-STD-883を適用する.

	GALA	かぐやLALT	はやぶさ2LIDAR	BELA
APDセンサー	C30954 (標準品、0.8mmφ)	C30954 (標準品、0.8mmφ)	C30954 (標準品、0.8mmφ)	C30954 (標準品、0.8mmφ)
プレアンプ信号帯域	110MHz (TBD)	>25MHz (110-120)	>100MHz (110-120)	25MHz
NEP	0.06 pW/Hz ^{1/2}	$< 0.12 \text{ pW/Hz}^{1/2}$ (0.01 - 0.02)	$< 0.12 \text{ pW/Hz}^{1/2}$	0.02 pW/Hz ^{1/2}
Responsivity	2250 kV/W (TBD)	500 kV/W	500 kV/W	?
暗電流	50 nA	< 150nA (30-40)	<150nA	50 nA
バイアス電圧	300 - 400 V	265-440 V (350-360)	265 - 440 V	<400V
HICに含まれるコンポーネ ント	APDセンサ TIA T-sensor TE-cooler HVローハ°スフィルタ	APDセンサ TIA T-sensor HVローハ [°] スフィルタ	APDセンサ TIA T-sensor HVローハ°スフィルタ	APDセンサ TIA T-sensor TE-cooler 温度補償回路
Life time	10 years	?	?	8 years
TID	30 krad	20 krad	20 krad	20 krad

3.1.2. 耐放射線性:木星磁気圏内の過酷な放射線環境に耐える必要がある.

シールドで30 kradまで低減するとともに、TIDおよびTNIDで性能劣化を評価する.また、放射線評価モ デルによる実証試験を実施する.

略語	モデル	備考
BBM	放射線評価用モデル	 フライト品と同じロットのAPDセンサーを使い、耐放射線性評価試験を実施する。
EM	エンシ゛ニアリンク゛モシ゛ュール	 センサーはフライト品と同じロット HIC回路設計はFM等価、部品レベル(宇宙規格品)はフライト品と 同じロットのもの、ただしスクリーニングを経ない。
FM	フライトモシ゛ュール	 製造管理:MIL-PRF-38534 (Class H) スクリーニング:MIL-STD-883

GALA検出器は常温でもっとも感度が上がる、一方、主鏡と副鏡は外部に露出しているため、積極的に保 温しない限り、-100~-80℃の低温になる、そこで、熱的な分界について検討した、まず、検出器と主鏡 の間にあるBEOについては、 常時室温に暖めることにした. これは、BPFの設計・検証が大変容易にな ることと, BEOは熱容量が小さくヒータ増加分が小さいことによる.次いで, 主鏡と副鏡については, GALAの電力リソースのマージンが大変少ないことから、低温望遠鏡をノミナルとした.ただし、検出器 など付属ユニットを、熱的にも構造的にも望遠鏡に接続することで、定常温度をなるべく上げるように 今後の熱構造設計を進める.

2.1.3 副鏡支持機構

従来は、円柱フレーム型、3本脚直結型、中央直中型の3案が並立していたが、望遠鏡を相似収縮させる ためには、主鏡・副鏡の熱的距離を短くすることが重要と考え、3本脚直結型をベースラインとした。 |2.1.4 バックエンド光学系は横置き(図2.1)|

バックエンド光学系を副鏡の直下に縦置きとする設計は熱構造を軸対称にできるというメリットがある 反面、主鏡による放射線シールドの恩恵を受けられないというデメリットがある、一方、横置きではfold mirrorが追加されるというデメリットに対して、主鏡下に広めのスペースが確保でき、レンズ径も取り扱 い易い 12 mmが採用できる.以上を総合判断して,横置きバックエンド光学系をベースラインとした.

|2.1.5 フードの追加(図2.2)|

高度500 kmの周回では, 最悪, 光軸から57度の方向から太陽光が直接入射する可能性がある. この直達 太陽光は迷光の原因であるとともに主鏡に温度分布を生じさせる恐れがあるので、フードを取り付ける こととした、フードの高さは、直達光が主鏡に到達しないことを条件に1段、100mm以上とする.

3.1.3 センサのゲイン安定性: APDセンサは大きな温度依存がある. HIC内のペルチェ冷却器による高精度($\pm 1^{\circ}$)の温度制御を行う.

高速LVDS出力のあるADCを採用することで、400 MSPSまで 対応可能である.

図3.1 AEM信号処理回路:ヘリテージ ベピコロンボMDM-Eの信号処理回路.

MDM-Eの構成 (GALAでの変更点) プレアンプ(不要、APD-HIC側にあり) トリガー用コンパレータ(不要、RFMからタイミン・FPGA(有)) ク゛ハ゜ルス) • LVDS(有) メインアンプ(有、可変アンプ) • DC/DC (有)

アナログスイッチ(不要、シングルチャンネルの為)

 サムアンプ(不要、シングルチャンネルの為) • ADC (有、サンプリング40M→200M)