@techreport{oai:jaxa.repo.nii.ac.jp:00002143, author = {馬場, 隆弘 and 山根, 敬 and 福山, 佳孝 and Bamba, Takahiro and Yamane, Takashi and Fukuyama, Yoshitaka}, month = {Feb}, note = {タービン翼などの高温部材に適用する高性能冷却構造体の開発には、熱負荷分布の詳細な予測が欠かせない。これを容易に行う解析手法としてUPACS(Unified Platform for Aerospace Computational Simulation)を利用した流体・熱伝導連成解析手法の開発に取り組んでいる。流体と同時に流体と接する物体内部の熱伝導も解く手法であり、壁面の温度境界条件を陽に与える必要が無く、部材内部の温度場も解析できるため、高温部材の熱解析には非常に有用な手法である。本報では、連成解析の流体部分に使用する乱流モデルを高度化し、より広範な流れ場に対して適用できるよう開発を行った。インピンジメント冷却、2次元タービン冷却翼列、フィルム冷却流れといった冷却流れにおける基本的ではあるが従来手法では解析が難しい流れ場において検証を行い、本手法の有効性を報告する。, Detailed prediction of thermal load is necessary in development of advanced cooling structure for high temperature parts such as turbine blade. Our team has been working on developing UPACS (Unified Platform for Aerospace Computational Simulation) based conjugate heat transfer analysis to meet such demand. It is an analysis method that solves the flow field as well as the heat conduction of the contacting solid object simultaneously. This method does not require thermal boundary condition on the contacting wall where neither adiabatic nor constant temperature condition can be applied. The temperature field inside the object, which is required in evaluation of the thermal stress, can be directly obtained. Therefore, the conjugate heat transfer analysis can be a powerful tool to deal with the heat problem in high temperature parts. In this report, advanced treatment in the turbulent models for flow analysis is installed to adapt to the wide range of flow field. Validation has been conducted for the basic flow fields for cooling problem, such as impingement cooling, simply cooled turbine airfoil and film cooling flow, to demonstrate the advantages of the proposed analysis method., 資料番号: AA0063884000, レポート番号: JAXA-RR-07-031}, title = {流体・熱伝導連成数値解析の精度向上について}, year = {2008} }