@techreport{oai:jaxa.repo.nii.ac.jp:00002194, author = {苅田, 丈士 and 谷, 香一郎 and Kanda, Takeshi and Tani, Koichiro}, month = {Mar}, note = {新しく提案する運動量釣合モデルを用いて、擬似衝撃波長さの推算を行った。この簡単なモデルでは、擬似衝撃波領域の壁面摩擦を0と仮定する。流入境界条件は擬似衝撃波の十分に上流で規定され、下流境界条件は出口圧力あるいはチョーク(閉塞)条件などで与えられる。流出インパルスファンクションは、流入インパルスファンクション、摩擦力、壁面からの反力と釣合う。この運動量釣合いモデルでは擬似衝撃波の開始位置、すなわち擬似衝撃波の長さは、この力のバランスが取れるように決められる。このモデルをステップのある/ない平行ダクトや、拡大管内の流れに適用してみた。2流が平行に流れるエジェクタージェットのディフューザー部にも適用してみた。このモデルは初期段階での検討用のモデルである。この点に鑑みると、計算結果は実験結果によく一致した。拡大管内の流れでは、擬似衝撃波開始位置は主に壁面反力に依存した。このモデルを用いて、擬似衝撃波の幾つかの特徴についても議論を行った。, The length of a pseudo-shock was estimated with a new momentum balance model. In this simple model, it is presumed that there is no wall friction in the region of the pseudo-shock. Inflow conditions are specified at a boundary sufficiently upstream of the pseudo-shock. The outflow boundary condition is applied with, for example, specified pressure or choking. The outflow impulse function is balanced with the inflow impulse function, the wall friction upstream of the pseudo-shock, and the reaction force from the wall. The starting position of the pseudo-shock is determined through balance of the forces in this model, and the length of the pseudo-shock is also determined. The model was applied to several kinds of flow fields, for example, straight ducts with and without a backward-facing step, and divergent ducts. The model was also applied to the diffuser of an ejector-jet, in which two gases flowed in parallel. The calculated results reasonably agreed with the experimental results within the scope of preliminary application. The starting position of the pseudo-shock was primarily dominated by the reaction force in the divergent duct. Several features of the pseudo-shock were discussed with the present model., 資料番号: AA0063568000, レポート番号: JAXA-RR-06-037E}, title = {Momentum balance model of flow field with pseudo-shock}, year = {2007} }