@techreport{oai:jaxa.repo.nii.ac.jp:00002199, author = {原田, 正志 and Harada, Masashi}, month = {Mar}, note = {従来の設計法では設計することが困難であった低レイノルズ数域で使用されるプロペラの設計法を開発した。従来の設計法ではプロペラ後流の形成により生じるエネルギ損失を最小にすることでプロペラ形状を決定していたが、この設計法はブレードの形状抵抗によるエネルギ損失が支配的になる低レイノルズ数領域では有効ではない。一方でここで提唱する設計法ではプロペラの推進効率そのものを最大化してプロペラ形状を決定するため、形状抵抗によるエネルギ損失を考慮に入れることができる。提唱する設計法ではブレード翼型の性能データに基づいて推力と吸収パワを循環のみの関数として表し、最適化を行う。提唱する設計法の有効性を検証するため、一般的な人力飛行機用のプロペラを従来の設計法と提唱する方法とで設計した。その結果、従来の設計法で設計されたプロペラの推進効率よりも提唱する設計法で設計されたプロペラの推進効率の方が最大で1.8%高いという結果が得られた。, A new method is presented for propeller design for low Reynolds numbers, where conventional methods may fall short. Conventional design methods determine the shape of a propeller by minimizing its induced loss, but this approach is not useful in designing a propeller for low Reynolds numbers, because there the majority of the energy loss is caused by the large profile drag of a propeller's blades. The proposed method directly maximizes the propulsive efficiency of a propeller, allowing the design of a highly efficient propeller while monitoring the loss caused by profile drag. In this method, thrust and power are expressed as functions of the circulation around the blade segments, while wing section data is also taken into account. This method was validated by comparing propellers designed by the conventional method and by the proposed method for a human-powered airplane. The propulsive efficiency of the propeller designed by the new technique is higher by as much as 1.8 percent., 資料番号: AA0063471000, レポート番号: JAXA-RR-06-032}, title = {低レイノルズ数プロペラの設計法}, year = {2007} }