@techreport{oai:jaxa.repo.nii.ac.jp:00002435, author = {松岡, 彩子 and 寺本, 万里子 and 野村, 麗子 and Matsuoka, Ayako and Teramoto, Mariko and Nomura, Reiko}, month = {Jan}, note = {宇宙機に搭載したベクトル磁力計を用いて、宇宙空間における磁場を精度良く観測するためには、絶対座標における磁場測定方向を高精度で決定する必要がある。このためには、絶対座標における宇宙機の姿勢を高精度で求めると同時に、宇宙機の機軸座標における磁場測定方向(アライメント)を高精度で求める必要がある。宇宙機がスピンしている場合には、ベクトル磁力計の3 成分のデータは正弦波の時間変動を示し、その振幅と位相を使って、スピン軸を基準とした機軸座標における磁力計のアライメントを算出することが可能である。磁力計の地上較正で、各測定軸の感度と測定軸間のなす角が既に求められている場合、アライメントを表す2 つの角度と、スピン面内の磁場の2 成分の合計4 つの未知数に対し、これらの間の関係を表す式は6 つ立ち、3 通りのアライメントの解が求められる。ここで示した手法を、ジオスペース探査衛星「あらせ」搭載の磁場観測器MGF によって実際に得られたデータに適用した。±8000 nT レンジの時には0.05度、±60000 nT レンジの時には0.2度の精度でアライメントを求められることが示された。, Magnetic field vector in the space has been measured by many magnetometers onboard spacecraft. When we need to measure the magnetic field with good accuracy, the precise determination of the sensing directions in the absolute coordinate is essential. We have to know the precise attitude of the spacecraft as well as the precise sensing directions in the frame of the spacecraft. In the case of spin-stabilized spacecraft, the three magnetic field components measured by the magnetometer show time-varying sinusoidal wave form. The alignment angles of the sensing direction can be computed from the amplitude and phase of the sinusoidal wave form. When the sensitivity of and angles between the three sensor elements are precisely calibrated in the ground experiment, the sensing directions in the spacecraft reference frame are expressed by two alignment angles., α and β. There are three solutions of the pair of the alignment angles, αandβ. We applied the calculation method shown here to the data from MGF onboard the Arase satellite. The alignment angles are determined with the accuracy of 0.05deg and 0.2deg for the +/-8000 nT and +/-60000 nT ranges, respectively., 形態: カラー図版あり, Physical characteristics: Original contains color illustrations, 資料番号: AA1830015000, レポート番号: JAXA-RM-18-008}, title = {スピン衛星に搭載した磁力計センサの軌道上データを用いたアライメント解析手法}, year = {2019} }