WEKO3
アイテム
壓力勾配のある壓縮性流體に於ける境界層に就いて
https://jaxa.repo.nii.ac.jp/records/35521
https://jaxa.repo.nii.ac.jp/records/3552118e73cb6-a41e-4533-9b4e-02f30c3b8a00
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2015-03-26 | |||||||||
タイトル | ||||||||||
タイトル | 壓力勾配のある壓縮性流體に於ける境界層に就いて | |||||||||
言語 | ||||||||||
言語 | jpn | |||||||||
資源タイプ | ||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||
資源タイプ | departmental bulletin paper | |||||||||
その他のタイトル(英) | ||||||||||
その他のタイトル | The Laminar Boundary Layer in Compressible Fluids with Pressure Gradient. | |||||||||
著者 |
濱, 良助
× 濱, 良助
× HAMA, Ryosuke
|
|||||||||
出版者 | ||||||||||
出版者 | 東京帝國大學航空研究所 | |||||||||
出版者(英) | ||||||||||
出版者 | Aeronautical Research Institute, Tokyo Imperial University | |||||||||
書誌情報 |
東京帝國大學航空研究所報告 en : Report of Aeronautical Research Institute, Tokyo Imperial University 巻 22, 号 321, p. 451-461, 発行日 1944-12 |
|||||||||
抄録(英) | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | Present paper is concerned with the theory of the laminar boundary layer in compressible fluids. By introducing the stream function φ which is defined by [numerical formula], [numerical formula], the equation of motion [numerical formula] may be transformed into [numerical formula], where x and y are the coordinates along and perpendicular to the wall, and u and v the x and y components of the velocity at any point. Both the density ρ and the viscosity μ are variables, and subscripts 1 and 0 denote the state corresponding to the outer edge of the boundary layer (y→∞) and the standard state corresponding to the state of adiabatic stagnation of the outer flow respectively. When the velocity along the outer edge of the boundary layer is given by u_1=cx^α, the differential equation can be further transformed into [numerical formula], where [numerical formula]. This can be solved by the method of successive approximations as [numerical formula], where [numerical formula], and C is a constant which is to be determined by the boundary condition: u→u_1 as η→∞. This approximation formula may also be described by introducing a nondimensional distance from the wall [numerical formula], then [numerical formula], where [numerical formula], and C is determined as before. Numerical calculations are performed under the conditions such that Prandtl number c_pμ/λ is equal to 1, and heat transfer at the wall is debared. Under these conditions there is a relation between the temperature and the velocity: [numerical formula], and the viscosity is given by [numerical formula] Several numerical results are given in a table and 14 figures. | |||||||||
書誌レコードID | ||||||||||
収録物識別子タイプ | NCID | |||||||||
収録物識別子 | AA00387631 | |||||||||
資料番号 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | 資料番号: SA4148604000 |