@inproceedings{oai:jaxa.repo.nii.ac.jp:00037127, author = {高澤, 金吾 and Takasawa, Kingo}, book = {航空宇宙技術研究所特別資料, Special Publication of National Aerospace Laboratory}, month = {Feb}, note = {航空宇宙技術研究所 12-13 Jun. 1997 東京 日本, National Aerospace Laboratory 12-13 Jun. 1997 Tokyo Japan, 航空輸送の安定成長および環太平洋諸国の急速な経済成長により、次世代超音速輸送機(新SST)の世界的規模での導入への期待が高まっている。コンピュータグラフィック画像および3面図による新SSTの特徴をコンコルドと比較して記述した。新SSTのマッハ数2.4での高速飛行能力を示した。亜音速陸上飛行の制約を、地理に関連して討議した。東行き運航では出発時間帯が狭いことを、2つの典型的な航空路のマッハ数2.4の速度での運航について例証した。新SSTに対する国内および国際両方の研究開発計画を要約した。日本国内超音速輸送技術のレベルアップを目標としたSTA(科学技術庁)の研究計画について、長官への第18号答申以降の経過をたどった。新SST関連の技術を実証するために、小型の無人超音速実験機を開発する研究活動を推進する報告を紹介した。研究計画の目標を述べた。新SST実機と対比して、11%縮尺の実験機の諸元を説明した。縮尺実験機において翼面荷重の避けがたい減少と、この困難を克服する計画飛行試験技術を提案した。概念的な新SSTのための線形理論による空力形状の予備設定で設計作業を開始した。新SST形状の揚抗比は、揚力係数0.1および高度17kmで8.8であると推定した。実験機はSST実機と幾何学的に相似の形状を有する。第1次の空力設計に基づいて、構造の概念設計および機能要素の配置を行った。第1次空力設計の翼胴形状について、CFD(数値流体力学)解析を行った。翼胴組み合わせの場合の翼面圧力分布は、特に内翼部で、翼のみの場合と明らかな違いを示した。線形理論による予測からのはずれを示した。翼形状を修正する厳密な手法を開発中である。いわゆるクリーン形態実験機の最終的な空力形状は、1998年夏に決まる予定である。ジェット実験機設計作業を追求するため、十分高度化したCFDに基づく設計ツールが開発され、風洞試験で検証されることが必要である。この研究領域における幾つかの考えを述べた。, The rise of expectation for the world-wide introduction of the next generation Supersonic Transport (a new SST) has been supported by a steady growth of air transportation and the rapid economic growth in countries on the Pacific rim. Features of a new SST with its computer graphic image and a three view drawing, were described in comparison with Concorde. Mach 2.4 high-speed capability of a new SST was shown. Subsonic overland constraints were discussed in relation to geography of the earth. Narrow departure time slots for east bound flights were illustrated in two typical air routes at Mach 2.4 speed. Both domestic and international research and development programs for a new SST were summarized. The STA's (Science and Technology Agency) research program which aims the level-up of domestic supersonic transport technology were traced since the 18th's reply to the minister. A report which promotes research activities to develop small unmanned supersonic experimental aircraft so as to verify technologies relating to a new SST were introduced. The targets of the research program were described. Dimensions of 11 percent scaled experimental aircraft were explained, in contrast with a full size new SST. The unavoidable decrease of wing loading in the scaled experimental aircraft and a planned flight test technique to overcome the difficulties were proposed. Design work was started at the preliminary settling of the aerodynamic configuration for a conceptual new SST with a linear theory. The lift over drag ratio for the new SST configuration was estimated as 8.8 at lift coefficient of 0.1 and 17 km altitude. Experimental aircraft has a geometrically similar configuration with the full size SST. Based on the first phase aerodynamic design, the conceptual design of structures and arrangement of functional components were conducted. The CFD (Computational Fluid Dynamics) analyses of wing-body configuration of first phase design were performed. Pressure distributions over wing surface of a wing-body case showed distinct deviations from a corresponding wing only case, especially at inboard wing. Deviations from the prediction with a linear theory were also shown. A rigorous procedure to modify wing configuration is under development. The final aerodynamic configuration of so-called clean experimental aircraft will settle this summer. In order to pursue jet powered aircraft design works, much sophisticated CFD based design tools will have to be developed and verified in wind tunnel tests. Some ideas were described in this area of efforts., 資料番号: AA0001433001, レポート番号: NAL SP-37}, pages = {1--8}, publisher = {航空宇宙技術研究所, National Aerospace Laboratory (NAL)}, title = {小型高速実験機システム設計とCFDの役割}, volume = {37}, year = {1998} }