@inproceedings{oai:jaxa.repo.nii.ac.jp:00037322, author = {小野寺, 卓郎 and 冨田, 健夫 and 田村, 洋 and Onodera, Takuo and Tomita, Takeo and Tamura, Hiroshi}, book = {航空宇宙技術研究所特別資料, Special Publication of National Aerospace Laboratory}, month = {Feb}, note = {航空宇宙技術研究所 24-26 Jun. 1998 東京 日本, National Aerospace Laboratory 24-26 Jun. 1998 Tokyo Japan, ロケット推進式SSTO(単段宇宙往復機)の推進システムは広範囲の高度で良好な性能を示すことが求められている。エアロスパイクエンジンは高度適応性があるのでこの条件を満たすと考えられている。すなわち、燃焼ガスの膨張比は周囲の圧力の変化に応じて自動的に変化する。このことにより高い膨張比を有するロケットエンジンを低高度でも流れの剥離なしに作動することができるので、広範囲の作動条件において高性能で作動させることが可能である。エアロスパイクノズル周りの流れ場はベル型ノズルの流れ場より複雑である。それは燃焼ガスの膨張比が周囲の圧力の影響を受けて膨張すること、およびクラスタ型エンジンでは隣接する排気ガス同士の干渉によって複雑になることに起因する。CFD(計算流体力学)は、この複雑な流れ場の構造を解析するのに有効な手段である。本研究では、エアロスパイクノズル周りの流れ場計算の第一段階として軸対称な100%長スパイクノズル周りの流れ場の無粘性計算を行いスパイクノズル壁面におけるシュリーレン映像および圧力分布の測定データと比較した。計算は2つの条件、すなわち、高高度条件(圧力比、つまり主流全圧と外部圧の比520)および低高度条件(圧力比13)について行った。両条件における数値計算によるマッハ数の等高線は衝撃波と拡張波によって構成されるシュリーレン映像に類似した流れの構造を示した。スパイクノズル壁面における圧力分布の計算結果は測定データとよく一致したが、低高度条件における流れの剥離領域では一致しなかった。, Propulsion systems for rocket powered SSTO (Single Stage To Orbit) vehicles are required to have good performance for a wide range of altitudes. An aerospike nozzle engine is thought to meet this requirement because it has altitude adaptation ability. Namely, the expansion ratio of the exhausted jet changes automatically according to changed in the ambient pressure. This makes it possible to operate rocket engines which have large expansion ratios without flow separation at low altitude. Consequently, the engines show good performance for a wide range of operational conditions. The flow field around the aerospike nozzle is more complicated than that in bell shaped nozzle, because the exhausted jets expand under the influence of the ambient pressure and because the adjacent jets interact in the case of the thrust cell clustered engines. CFD (Computational Fluid Dynamics) is a powerful tool for analyzing the structure of this complicated flow field in detail. In this study, as the first step of calculating the flow field around the aerospike nozzle, the inviscid calculations of the flow field around the axisymmetric spike nozzle of 100 percent length were performed and compared the numerical results with the experimental data (schlieren images and pressure distributions on the spike nozzle wall). Calculations were done on two kinds of conditions, namely, at high altitude condition (pressure ratio, which means the ratio of the thrust chamber pressure and the ambient pressure, is 520) and at low altitude condition (pressure ratio is 13). The contour lines of Mach numbers from the numerical results in both conditions show the flow structure similar to the schlieren images, which consist of shock waves and expansion waves. Pressure distributions on the spike nozzle wall from the numerical results also show good agreements with the experimental data except in the flow separation region in case of the low altitude condition., 資料番号: AA0001958008, レポート番号: NAL SP-41}, pages = {53--57}, publisher = {航空宇宙技術研究所, National Aerospace Laboratory (NAL)}, title = {環状型スパイクノズル周り流れの数値解析}, volume = {41}, year = {1999} }