@techreport{oai:jaxa.repo.nii.ac.jp:00039902, author = {重見, 仁 and 伊藤, 婦美子 and Shigemi, Masashi and Ito, Fumiko}, month = {Dec}, note = {非圧縮性ナビエ・ストークスの式を有限要素法によって解く計算コードに、高レイノルズ数型のκ-ε乱流モデルを組み合わせて、翼型まわりの流れを数値的に解くことを試みた。解くべき方程式は非線形性が強く、発散しやすい性質を持つが、陰的オイラースキームを用いて時間積分を実行し、さらに一様流中に潜在する乱れの存在を仮定した結果、安定な流れの解を得ることができた。迎角、フラップの偏角があまり大きくない場合の比較的おとなしい流れに対しては、計算で得られた翼型まわりの圧力分布、揚力は実験結果と良く一致し、この乱流モデルを用いる有効性が確認できた。しかし、流れが時間とともに振動する場合や、迎角の大きい場合には、実験値と計算値の一致の度合いは低くなった。陰的オイラースキームの採用に伴って必要となった大規模な1次方程式系の解法として、できる限り少ない計算メモリで高速に解の得られる直接解法コードを新たに開発して用いた。, Finite-element analysis code to solve incompressible Navier-Stokes equations was incorporated into the kappa-epsilon turbulence model of high Reynolds number type, and was applied to flows around single- and multicomponent aerofoils. Although the relevant equations are highly nonlinear and, therefore, their solutions are easy to diverge, the employment of the implicit Euler scheme for time marching integral and the introduction of background turbulence in the uniform flow made it possible to obtain stable solutions. For gentle flows produced around aerofoils at moderate angles of attack or aerofoils with a flap and slat at moderate deflection angles, the computed pressure distributions around the aerofoils and lift coefficients as well are in good agreement with measured results. The effectiveness of the turbulence model for such complicated flows was assured from this fact. For the flows which oscillated periodically or corresponded to aerofoils at high angles of attack, however, there was less agreement between computed and measured results. To solve a large-scale linear equation system, which was necessitated by the adoption of the implicit Euler scheme, a newly developed code for the direct method was used successfully., 資料番号: AA0000880000, レポート番号: NAL TR-1316}, title = {κ-ε乱流モデルを用いた単翼素および多翼素型まわり非圧縮流れの有限要素法による解析}, year = {1996} }