@techreport{oai:jaxa.repo.nii.ac.jp:00040042, author = {野口, 義男 and Noguchi, Yoshio}, month = {Oct}, note = {新素材の強さを評価するための標準化技術確立に関する研究の一環として、炭素繊維強化樹脂複合材(CFRP)の静的引張強さ試験および引張疲れ強さ試験を行った。供試体には、1方向強化基材を積層した直交積層剤と、それに加えて平織物基材を積層した織物積層材を用いた。前者の試験片の繊維としては、比較のために高強度品、高伸度品、および高強度・中弾性率品の特徴を有する3種類の炭素繊維を、また後者については、高強度品と高伸度品の炭素繊維を用いて、それぞれの強さを評価した。試験片の破断様相をX線透過探傷写真結果を観察することにより、損傷を定量化した。試験の結果、何れも突発的な破断様相であることを確認した。なお高強度品の場合には、チャック切れ破断を呈するものであった。各試験片の繰返し応力と破断までの繰返し数の関係は、片対数グラフで直線近似式によって表すことができた。直交積層材の疲れ強さ比(疲れ強さ/静的強さ)は、高強度品を用いたものが最も大きく、次いで高伸度品、高強度・中弾性率品の順番になった。1方向強化基材の直交積層材よりも平織物基材の織物積層材の方が疲れ強さ比は10%程度低めの値を示した。, This study evaluates the testing method for static tensile and fatigue strength of advanced composite materials. The fatigue test is conducted under tensile-tensile constant range loading. The test specimen is a cross-ply laminated CFRP (Carbon Fiber Reinforced Plastic) using a unidirectional fiber reinforced substrate and epoxy resin. The three carbon fibers adopted in this test are classified as high-strength, high-strain and high-strength/intermediate-elastic-modulus types. Fatigue damage in test specimens is quantified by an X-ray radiography penetrative crack detection method. The test results indicated that the fracture of all specimens occurred in sudden mode. The high-strength type CFRP should exhibit rupture in grip portion. The relationship between fatigue stress and number of cycles is approximately linear on a semi-logarithmic graph. After being subjected to 10(exp 7) stress cycles, the ratios of tensile fatigue strength to static tensile strength for high-strength, high-strain and high-strength/intermediate-elastic-modulus types CFRP were estimated to be 0.97, 0.85, and 0.76, respectively., 資料番号: AA0001323000, レポート番号: NAL TR-1338}, title = {直交積層CFRPの引張疲れ強さの実験的評価}, year = {1997} }