{"created":"2023-06-20T15:11:25.622218+00:00","id":41077,"links":{},"metadata":{"_buckets":{"deposit":"3ee42925-418e-4940-9644-baef8182f174"},"_deposit":{"created_by":1,"id":"41077","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"41077"},"status":"published"},"_oai":{"id":"oai:jaxa.repo.nii.ac.jp:00041077","sets":["1887:1893","1896:1898:1933:1934"]},"author_link":["501396","501398","501394","501392","501399","501395","501393","501397"],"item_3_alternative_title_2":{"attribute_name":"その他のタイトル(英)","attribute_value_mlt":[{"subitem_alternative_title":"Growth of semiconducting compound single crystal InSb by floating zone method"}]},"item_3_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1994-10-20","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"506","bibliographicPageStart":"499","bibliographic_titles":[{"bibliographic_title":"宇宙開発事業団技術報告"},{"bibliographic_title":"NASDA Technical Memorandum","bibliographic_titleLang":"en"}]}]},"item_3_description_16":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"微小重力下での融液からの結晶成長の特徴を明確にするために、1992年9月スペースシャトルエンデバー号(STS47)に搭載した赤外線イメージ炉を用いてインジウムアンチモン(InSb)の浮遊帯域溶融法結晶成長実験を行った。その結果、直径20mm、長さ100mmのInSb単結晶を作ることに成功した。この実験は微小重力環境で浮遊帯域溶融法で化合物半導体の育成を行った最初の実験であり、その単結晶の大きさは過去のすべての宇宙での結晶成長実験の中で最も大きいものである。この実験により宇宙空間の微小重力環境が大型の単結晶の作製に適していることが実証され、また浮遊帯域溶融法が微笑重量環境において、過去の宇宙実験でなされたシリコン(Si)やゲルマニウム(Ge)と同様に化合物半導体にも有効であることが証明された。結晶成長中浮遊帯表面は酸化インジウム(In2O3)の薄い皮膜で一様に覆われ、自由表面が存在しなかった。すなわち、結晶成長は薄い酸化皮膜に拘束された状態で進んでいった。得られた単結晶の転位密度は8.2x10{2}/平方センチメートルであり、種結晶として用いた地上でチョクラルスキー法で作成したInSb単結晶の転位密度が2.2x10{(3}/平方センチメートルであるのに比べて、著しく低くなった。また真性温度領域でのキャリヤー濃度については得られた単結晶のそれは4.6x10{19}/立方メートルであり、種結晶のそれが1.7x10{20}/立方メートルであるのに対して、著しく減少した。すなわち、結晶学的にもまた電気的にも微小重力環境で作製したものは地上で作製したものより高品位であることが分かった。微小重力下では融液に重力誘起の熱対流がないことに加え、融液が薄い酸化皮膜に覆われたことにより、表面張力誘起流が起こらず、融液はほとんど流動しない状態で結晶成長が進んだものと考えられる。また薄い酸化皮膜は柔軟であり、成長結晶に対して応力や歪を与えることなく、同時に結晶の構成元素で構成されているため成長結晶に汚染をおよぼさない。このように酸化皮膜は融液に対する理想的な容器の役割をなすものと考えられる。微小重力環境で得られた結晶が高品位であった理由はこのような理由によっている。","subitem_description_type":"Abstract"}]},"item_3_description_17":{"attribute_name":"抄録(英)","attribute_value_mlt":[{"subitem_description":"In order to distinguish features of crystal growth from fused liquid under microgravity, InSb crystal growth experiment by Floating Zone (FZ) method was performed using infrared image furnace boarding on the Endeavour space shuttle on September, 1992. The experiment brought successfully 20 mm in diameter and 100 mm in length of InSb single crystal. This is first crystal growth experiment for semiconducting compound by FZ method under microgravity, and the obtained crystal was the biggest among one obtained in past experiments. It was demonstrated from the experiment that microgravity in space was suitable for production of big single crystal. It was also made clear that FZ method was efficient for production of semiconducting compound as well as production of silicon or germanium semiconductor performed in past space experiments. Surface of FZ was uniformly covered with thin film of oxide indium (In2O3), therefore there was no free surface. That is, crystal growth advanced in state restrained with thin oxide cover film. Dislocation density of obtained single crystal was 8.2x10(exp 2) /sq cm. This value is remarkably low compared with 2.2x10(exp 3) /sq cm of dislocation density of InSb single crystal as seed crystal produced on ground surface by Czochralski method. Carrier concentration of obtained single crystal in intrinsic temperature region was 4.6x10(exp 19) /cu m. On the other hand, carrier concentration of seed crystal was 1.7x10(exp 20) /cu m, and it was found from the value to be greatly reduced compared with that of seed crystal. That is, it was made clear that single crystal produced under microgravity was high quality compared to ground grown crystal in electrical or crystallographyical aspect. In addition to no thermal convection induced by gravity in melts under microgravity, due to covering of melts by thin oxide film, it is supposed that surface tension induced liquid flow did not occur, therefore, crystal growth advanced in state which was almost no melts flow. Moreover, the grown crystal is not prevented from stresses or strains due to flexibility of thin oxide film, together with the grown crystal is not contaminated due to constitution from crystal constituents. As above mentioned, it is considered that oxide film plays role of desirable container for melts. It is the reason why crystal obtained under microgravity has high quality.","subitem_description_type":"Other"}]},"item_3_description_32":{"attribute_name":"資料番号","attribute_value_mlt":[{"subitem_description":"資料番号: AA0004116003","subitem_description_type":"Other"}]},"item_3_description_33":{"attribute_name":"レポート番号","attribute_value_mlt":[{"subitem_description":"レポート番号: NASDA-TMR-940002 V.2","subitem_description_type":"Other"}]},"item_3_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"宇宙開発事業団"}]},"item_3_publisher_9":{"attribute_name":"出版者(英)","attribute_value_mlt":[{"subitem_publisher":"National Space Development Agency of Japan (NASDA)"}]},"item_3_source_id_21":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1345-7888","subitem_source_identifier_type":"ISSN"}]},"item_3_source_id_24":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AN00364784","subitem_source_identifier_type":"NCID"}]},"item_3_text_6":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"金属材料技術研究所"},{"subitem_text_value":"金属材料技術研究所"},{"subitem_text_value":"金属材料技術研究所"},{"subitem_text_value":"金属材料技術研究所"}]},"item_3_text_7":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_language":"en","subitem_text_value":"National Research Institute for Metals"},{"subitem_text_language":"en","subitem_text_value":"National Research Institute for Metals"},{"subitem_text_language":"en","subitem_text_value":"National Research Institute for Metals"},{"subitem_text_language":"en","subitem_text_value":"National Research Institute for Metals"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"中谷, 功"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"高橋, 總"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"小澤, 清"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"西田, 勲夫"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Nakatani, Isao","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Takahashi, Satoshi","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Ozawa, Kiyoshi","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Nishida, Isao","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2020-02-10"}],"displaytype":"detail","filename":"04116003.pdf","filesize":[{"value":"730.6 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"04116003.pdf","url":"https://jaxa.repo.nii.ac.jp/record/41077/files/04116003.pdf"},"version_id":"f8facd7b-f952-4076-ab13-3b7e77617223"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"浮遊帯域溶融法","subitem_subject_scheme":"Other"},{"subitem_subject":"化合物半導体","subitem_subject_scheme":"Other"},{"subitem_subject":"InSb単結晶","subitem_subject_scheme":"Other"},{"subitem_subject":"結晶成長","subitem_subject_scheme":"Other"},{"subitem_subject":"微小重力環境","subitem_subject_scheme":"Other"},{"subitem_subject":"赤外線イメージ炉","subitem_subject_scheme":"Other"},{"subitem_subject":"浮遊帯表面","subitem_subject_scheme":"Other"},{"subitem_subject":"酸化インジウム","subitem_subject_scheme":"Other"},{"subitem_subject":"酸化皮膜","subitem_subject_scheme":"Other"},{"subitem_subject":"自由表面","subitem_subject_scheme":"Other"},{"subitem_subject":"転位密度","subitem_subject_scheme":"Other"},{"subitem_subject":"チョクラルスキー法","subitem_subject_scheme":"Other"},{"subitem_subject":"キャリア濃度","subitem_subject_scheme":"Other"},{"subitem_subject":"熱対流","subitem_subject_scheme":"Other"},{"subitem_subject":"表面張力誘起流","subitem_subject_scheme":"Other"},{"subitem_subject":"floating zone method","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"compound semiconductor","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"InSb single crystal","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"crystal growth","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"microgravity environment","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"infrared image furnace","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"floating zone surface","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"indium oxide","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"oxide cover film","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"free surface","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"dislocation density","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Czochralski method","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"carrier concentration","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"thermal convection","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"surface tension induced flow","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"technical report","resourceuri":"http://purl.org/coar/resource_type/c_18gh"}]},"item_title":"浮遊帯域溶融法による化合物半導体InSb単結晶の育成","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"浮遊帯域溶融法による化合物半導体InSb単結晶の育成"}]},"item_type_id":"3","owner":"1","path":["1893","1934"],"pubdate":{"attribute_name":"公開日","attribute_value":"2015-03-26"},"publish_date":"2015-03-26","publish_status":"0","recid":"41077","relation_version_is_last":true,"title":["浮遊帯域溶融法による化合物半導体InSb単結晶の育成"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-06-20T20:27:14.803151+00:00"}