Item type |
テクニカルレポート / Technical Report(1) |
公開日 |
2015-03-26 |
タイトル |
|
|
タイトル |
Experimental works for high Pr: The role of dynamic surface deformation in oscillatory Marangoni convection in liquid bridge of high prandtl number fluid |
|
言語 |
en |
言語 |
|
|
言語 |
eng |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
マランゴニ対流 |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
液体ブリッジ |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
振動 |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
プラントル数 |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
表面歪み |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
表面温度 |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
表面張力 |
キーワード |
|
|
主題Scheme |
Other |
|
主題 |
温度分布 |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Marangoni convection |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
liquid bridge |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
oscillation |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
Prandtl number |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
surface distortion |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
surface temperature |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
surface tension |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
temperature distribution |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
その他のタイトル |
|
|
その他のタイトル |
高プラントル数流体の液体ブリッジにおける振動マランゴニ対流の力学的表面歪みの役割 |
著者 |
西野, 耕一
依田, 真一
Nishino, Koichi
Yoda, Shinichi
|
著者所属 |
|
|
|
横浜国立大学 |
著者所属 |
|
|
|
宇宙開発事業団 |
著者所属(英) |
|
|
|
en |
|
|
Yokohama National University |
著者所属(英) |
|
|
|
en |
|
|
National Space Development Agency of Japan |
出版者 |
|
|
出版者 |
宇宙開発事業団 |
出版者(英) |
|
|
出版者 |
National Space Development Agency of Japan (NASDA) |
書誌情報 |
宇宙開発事業団技術報告: Marangoni Convection Modeling Research: Annual Report April 1, 1999 - March 31, 2000
en : NASDA Technical Memorandum: Marangoni Convection Modeling Research: Annual Report April 1, 1999 - March 31, 2000
p. 41-71,
発行日 2000-09-29
|
抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
The onset of oscillation of surface tension driven convection (Marangoni convection) in liquid bridges simulating half floating zone models has been a target of extensive studies in thermal and fluid science from view points not only of the material processing in microgravity but of the fundamental instability mechanism in this unique convection. The uniqueness lies in the facts (1) that the convection is driven by the surface tension gradient along the liquid-gas interface, (2) that there is a strong coupling between fluid motion and fluid temperature, and (3) that the liquid surface may be deformed statically and dynamically. The last feature, particularly the Dynamic Surface Deformation (DSD, hereafter), has not been studied well so for while the surface deformation is known to impose a significant influence on the Benard-Marangoni instability of horizontal liquid layers. The present study aims at clarifying, in normal gravity experiments, the role of DSD in oscillatory Marangoni convection in a liquid bridge of high Pr fluid. In the present study, a liquid bridge of silicone oil, v = 5 cSt and Pr = 69, is suspended between two coaxial disks, both 5 mm in diameter and 205 mm apart. The ratio of the liquid volume to the volume of the gap between the disks is varied from 0.6 to 1.1. A temperature difference between the disks is given to generate Marangoni convection, which becomes oscillatory when the temperature difference exceeds a critical value. The temperature distribution on the liquid surface is measured with an IR camera having a temporal resolution of 30 fps. Simultaneously, the DSD is measured with the Microscopic Imaging Displacement Meter (MIDM) developed in this project. The two signals are analyzed in detail to find out any physical relations between DSD and Surface Temperature Oscillation (STO, hereafter). The main findings gained in this study are that (1) in the supercritical condition, the surface of the liquid bridge oscillates at the same frequency of STO, (2) the amplitude of DSD is the order of 1 micrometer, varying with axial position of measurement, (3) the DSD is observed to grow from the region near the hot disk, (4) there is definite phase relationships between DSD and STO, and (5) their phase difference is dependent on the volume ratio and axial position of measurement but is approximately out of phase near the hot disk for all the volume ratios studied. These findings strongly suggest important roles of DSD near the hot disk although further efforts are still needed to draw a complete picture that can explain the role of DSD in the onset of oscillation. |
ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
1345-7888 |
書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AN00364784 |
資料番号 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
資料番号: AA0010763002 |
レポート番号 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
レポート番号: NASDA-TMR-000006E |