@techreport{oai:jaxa.repo.nii.ac.jp:00041431, author = {牧野, 好和 and 岩宮, 敏幸 and Lei, Zhong and Makino, Yoshikazu and Iwamiya, Toshiyuki and Lei, Zhong}, month = {Dec}, note = {航空宇宙技術研究所 17-19 Jan. 2000 東京 日本, National Aerospace Laboratory 17-19 Jan. 2000 Tokyo Japan, 機体とエンジンナセルの統合化を考慮して、マッハ2.0で飛行する縮尺超音速実験機の数値シミュレーションを行った。重合格子法を含む3次元オイラーCFD(計算流体力学)コードを用いて、複雑な飛行機形状周りの流れ場を解いた。計算して得た圧力分布は、風洞実験で得られた結果とよい一致を示した。さらに、CFDコードと抗力を最小にする最適化の手法を組み合わせ、空力設計ツールを開発した。まず軸対称物体に適用し、本方法を検証した。得られた最適化機体形状はSears-Haackの機体とよく一致している。次に、翼と胴体からなる2つの物体に適用した。最適な機体形状での圧力抵抗は、Sears-Haackの結果よりおよそ9%小さく、最終的な体積は始めの体積に維持されていた。, The numerical simulation of a Mach 2.0 scaled supersonic experimental airplane is conducted with the consideration of the integration between air-frame and engine nacelles. A three-dimensional Euler CFD (Computational Fluid Dynamics) code with an overset-grids technique is adopted for solving the flow-field around a complex airplane configuration. The calculated pressure distributions were compared with wind tunnel test data and showed good agreement with them. The aerodynamic design tool, which combines the CFD code with an optimization technique for drag minimization, was developed. At first, it is applied to an axisymmetrical body in order to validate this design tool. The result showed that the optimized body geometry agrees well with the Sears-Haack body. Next, it was applied to two bodies under a wing-body configuration. The pressure drag of the optimized configurations was about 9 percent lower than that of the Sears-Haack body and their final volumes were maintained at the initial volume., 資料番号: AA0028638015, レポート番号: NAL SP-49T}, title = {Aerodynamic nacelle shape optimization for NAL's experimental airplane}, year = {2000} }