{"created":"2023-06-20T15:14:51.303471+00:00","id":44860,"links":{},"metadata":{"_buckets":{"deposit":"30fc62bc-dfcf-402a-8d0c-f1a4dc07e0c1"},"_deposit":{"created_by":1,"id":"44860","owners":[1],"pid":{"revision_id":0,"type":"depid","value":"44860"},"status":"published"},"_oai":{"id":"oai:jaxa.repo.nii.ac.jp:00044860","sets":["1887:1893","1896:1898:1913:1917"]},"author_link":["471630","471629"],"item_3_biblio_info_10":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1980-04","bibliographicIssueDateType":"Issued"},"bibliographicPageStart":"39","bibliographicVolumeNumber":"605T","bibliographic_titles":[{"bibliographic_title":"航空宇宙技術研究所報告"},{"bibliographic_title":"Technical Report of National Aerospace Laboratory TR-605T","bibliographic_titleLang":"en"}]}]},"item_3_description_16":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"三次元翼のまわりのポテンシャル流れを計算する方法の一つとして,翼表面に沿う速度成分を未知凾数とする積分方程式を導き,その性質を調べた。この方程式は,翼のまわりの流れ場を翼表面に分布する二重湧出しで表現し,流れの境界条件として,翼表面に垂直な速度成分の代りに,それと等価な,翼内部の流れに関する条件を利用して得られるもので,二次元翼の場合に対するPrager,Vandrey,Martensenなどによる手法を三次元流れに拡張したものである。揚力のある翼の場合の翼後縁におけるKuttaの条件の重要性に鑑み,この定式化におけるKuttaの条件の意味を調べ,後流渦面の翼後縁における形状とその上の渦の分布の様式がこの条件の成立に密接に関係していることを明らかにした。","subitem_description_type":"Abstract"}]},"item_3_description_17":{"attribute_name":"抄録(英)","attribute_value_mlt":[{"subitem_description":"A Fredholm integral equation of the second kind for the surface velocity components of the three-dimensional incompressible potential flow around a body is obtained by extending the procedure explored by W.Prager, F.Vandrey and E.Martensen for the two-dimensional case. The formulation is based on the representation of the velocity potential by a doublet distribution over the body surface, and is realized by replacing the original surface boundary condition of the vanishing normal velocity component with the equivalent condition of the quiescent flow in the region inside the body. The formulation is then generalized to cases where the normal velocity component to the body surface does not necessarily vanish identically so that it can be utilized in the boundary-layer-displacement-model procedure designed to account for viscous effects within the scope of the inviscid flow thoery. This generalization is accomplished by combining the above-mentioned doublet distribution with a source distribution of prescribed strengths. Since our formulation lacks redundancy in variables to take care of the Kutta condition at the trailing edge of a lifting wing, the implication of this condition in our formulation is studied by examining the behaviour of our basic integral equation at the trailing edge of a wing. It is found that the geometry of the trailing vortex sheet and the direction of vortex shedding in the immediate neighbourhood of the trailing edge bear essential relations to the fulfilment of the Kutta condition. The classical Prandtl model of the trailing vortex sheet is, in principle, not adequate for our formulation.","subitem_description_type":"Other"}]},"item_3_description_32":{"attribute_name":"資料番号","attribute_value_mlt":[{"subitem_description":"資料番号: NALTR0605T000","subitem_description_type":"Other"}]},"item_3_description_33":{"attribute_name":"レポート番号","attribute_value_mlt":[{"subitem_description":"レポート番号: NAL TR-605T","subitem_description_type":"Other"}]},"item_3_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"航空宇宙技術研究所"}]},"item_3_publisher_9":{"attribute_name":"出版者(英)","attribute_value_mlt":[{"subitem_publisher":"National Aerospace Laboratory(NAL)"}]},"item_3_source_id_21":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0389-4010","subitem_source_identifier_type":"ISSN"}]},"item_3_text_6":{"attribute_name":"著者所属","attribute_value_mlt":[{"subitem_text_value":"航空宇宙技術研究所空気力学第二部"}]},"item_3_text_7":{"attribute_name":"著者所属(英)","attribute_value_mlt":[{"subitem_text_language":"en","subitem_text_value":"Second Aerodynamics Division, National Aerospace Laboratory(NAL)"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"海老原, 正夫"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"EBIHARA, Masao","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2020-01-29"}],"displaytype":"detail","filename":"naltr0605t.pdf","filesize":[{"value":"2.9 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"naltr0605t.pdf","url":"https://jaxa.repo.nii.ac.jp/record/44860/files/naltr0605t.pdf"},"version_id":"42b0c3dc-2ec5-4d6c-ba62-daf172561ced"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"technical report","resourceuri":"http://purl.org/coar/resource_type/c_18gh"}]},"item_title":"A Formulation of the Three-Dimensional Potential Flow Field around a Lifting Wing by Use of the Surface Velocity Components -an Extension of the Prager-Vandrey-Martensen Procedure to the Three-dimensional Case-","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"A Formulation of the Three-Dimensional Potential Flow Field around a Lifting Wing by Use of the Surface Velocity Components -an Extension of the Prager-Vandrey-Martensen Procedure to the Three-dimensional Case-","subitem_title_language":"en"}]},"item_type_id":"3","owner":"1","path":["1893","1917"],"pubdate":{"attribute_name":"公開日","attribute_value":"2015-03-26"},"publish_date":"2015-03-26","publish_status":"0","recid":"44860","relation_version_is_last":true,"title":["A Formulation of the Three-Dimensional Potential Flow Field around a Lifting Wing by Use of the Surface Velocity Components -an Extension of the Prager-Vandrey-Martensen Procedure to the Three-dimensional Case-"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-06-20T21:49:36.126548+00:00"}