@techreport{oai:jaxa.repo.nii.ac.jp:00044867, author = {青木, 竹夫 and 高島, 一明 and AOKI, Takeo and TAKASHIMA, Kazuaki}, month = {May}, note = {A reservoir-orifice method is described, with extends the useful running time of a Ludwieg tube by using a reservoir and an orifice(nozzle)at the upstream end of the storage tube. The method has been called “driver-reservoir method”and it is used to expand the running time of a shock tube. For a unique or optimum area ratio of an orifice, velocity and pressure of the flow after steady expansion at an orifice will be the same as that of the flow behind the unsteady expansion wave in the storage tube. At that time, the weakest reflected wave from the orifice will be obtained. Furthermore, when the area ratio of an orifice is timely controlled, the effect of a reflected wave is expected to be less than that of the fixed area ratio. Firstly, the case of constant area ratio is treated. The equation which gives the optimum area ratio is theoretically derived by using the relations of one-dimensional steady flow and unsteady one. Using the method of characteristics, a numerical simulation of nozzle-reservoir flow system has been carried out. The result of the numerical simulation was compared with the result of a theoretical equation. We got good correlation between the result of the theory and that of the numerical simulation. Secondly, the numerical simulation for variable are ratio of a nozzle is presented to obtain the optimum control parameters of the area ratio of the nozzle., 資料番号: NALTR0612000, レポート番号: NAL TR-612}, title = {貯気槽-有孔板法によるルートビーク管の持続時間の延長-理論解析と数値実験-}, year = {1980} }