@techreport{oai:jaxa.repo.nii.ac.jp:00048020, author = {二宮, 哲次郎 and 牧野, 好和 and 石川, 敬掲 and 苅野, 秀和 and 矢入, 健久 and 冨田, 博史 and NINOMIYA, Tetsujiro and MAKINO, Yoshikazu and ISHIKAWA, Hiroaki and KARINO, Hidekazu and YAIRI, Takehisa and TOMITA, Hiroshi}, month = {Sep}, note = {D–SENDプロジェクトは,ソニックブームの低減をするための空力設計技術を飛行実証するための飛行実験であり,プロジェクトの2番目の飛行実験となるD–SEND#2では,無推力有翼機体を高層気球で高度約30kmから分離し,機体に搭載された飛行制御用コンピュータにより目標としたソニックブーム計測システム(BMS)に向けて自律的に飛行し,目的の状態量を実現する.飛行制御系は,空力モデルを含む詳細な数学モデルを使用したアルゴリズムを採用しているため,数学モデルの正確さが制御性能を左右する.本稿では,この飛行実験で得られたデータより不確さを含めた空力特性の推定を行い,設計時の空力モデルとの比較を行う.さらに飛行実験後に行われた検証目的のCFDとの比較により,飛行データから推定した空力特性の妥当性を確認する., D-SEND is a project to demonstrate a low sonic boom aerodynamic design concept. In the #2 part of this project, the flight test was conducted at the Esrange Space Center in Sweden. Three Boom Measurement Systems (BMSs) were set up in the Zone-B flight test area. A BMS comprises a series of microphones attached to the mooring cable of a blimp to record the sound of the sonic boom generated by the test vehicle at various heights above the ground, and associated ground support facilities. The vehicle is lifted to an altitude of 30 km suspended vertically from a balloon, and separates when it drifts to within a given distance from any one of the BMSs. After separation, the vehicle’s onboard flight control computer selects one of the BMSs as a target according to the separation point. The vehicle then autonomously flies to the selected BMS and establishes prescribed sonic boom measurement flight conditions in its vicinity. Since this controller uses a detailed mathematical model of the vehicle, it is quite important to evaluate the accuracy of the mathematical model. The aerodynamic coefficients and their uncertainties are estimated, and they are compared to the aerodynamic model for the controller design., 形態: カラー図版あり, Physical characteristics: Original contains color illustrations, 資料番号: AA2130005000, レポート番号: JAXA-RR-21-001}, title = {D-SEND#2の飛行データを用いた不確かさを含む空力特性の推定}, year = {2021} }