@inproceedings{oai:jaxa.repo.nii.ac.jp:00006121, author = {中井, 達也 and 宮本, 尚使 and 西山, 和孝 and 國中, 均 and Nakai, Tatsuya and Miyamoto, Takashi and Nishiyama, Kazutaka and Kuninaka, Hitoshi}, book = {宇宙航空研究開発機構特別資料: 2005年度宇宙関連プラズマ研究会講演集, JAXA Special Publication: Proceedings of Space Plasma Symposium 2005}, month = {Feb}, note = {マイクロ波放電型イオンエンジンの開発に伴い、そのイオン源の解析理論の構築が必要となっている。本研究ではその第1段階として、現在研究開発が進められているμ20のイオン源に対してプローブ計測を行った。μ20のイオン源には、特徴である放電室内の磁場形状や推進剤の供給方法から、周方向の分布が存在する事が予想される。今回のプローブ計測により、内側の磁石列間において周方向の分布が確認された。電子の受けるΔBドリフトの方向に沿って、電子温度の増加とプラズマ密度の減少が見られた。また、推進剤の供給位置を変えた場合に電子温度・プラズマ密度に違いがあることがわかった。これらの結果より、放電室形状を最適にすることでμ20の性能向上が期待できる。, Along with the development of microwave discharge ion engines, it is necessary that a analysis model of the ion sources is developed. As the first stage, probe measurements of the ion source of micro 20, which is under the development now, were done. In the discharge chamber of micro 20, it is expected that a certain circumferential distribution is exist because of the magnetic field and the gas ports in the discharge chamber. In this research, we got the distribution between inside magnet rows, which indicated an increase in electron temperatures and a decrease in plasma densities along the direction of the Delta B drift of electrons. Moreover, it is found that electron temperatures and plasma densities change in two different cases of the locations of the gas ports. These results show that the best shape of the discharge chamber can improve the performance improvement of micro 20., 資料番号: AA0049213012, レポート番号: JAXA-SP-05-020}, pages = {82--86}, publisher = {宇宙航空研究開発機構, Japan Aerospace Exploration Agency (JAXA)}, title = {マイクロ波イオン源のプローブ診断}, volume = {JAXA-SP-05-020}, year = {2006} }