Item type |
テクニカルレポート / Technical Report(1) |
公開日 |
2018-02-06 |
タイトル |
|
|
タイトル |
アンモニウムジニトラミドの凝縮相分解に関する詳細反応モデル構築 |
言語 |
|
|
言語 |
jpn |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
ammonium dinitramide (ADN) |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
reaction pathway |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
detailed kinetic model |
キーワード |
|
|
言語 |
en |
|
主題Scheme |
Other |
|
主題 |
ab initio calculation |
資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_18gh |
|
資源タイプ |
technical report |
ID登録 |
|
|
ID登録 |
10.20637/JAXA-RR-17-008/0004 |
|
ID登録タイプ |
JaLC |
その他のタイトル(英) |
|
|
その他のタイトル |
A detailed kinetic model of condensed-phase reaction of ammonium dinitramide |
著者 |
伊里, 友一朗
三宅, 淳巳
Izato, Yuichiro
Miyake, Atsumi
|
著者所属 |
|
|
|
横浜国立大学 |
著者所属 |
|
|
|
横浜国立大学 |
著者所属(英) |
|
|
|
en |
|
|
Yokohama National University |
著者所属(英) |
|
|
|
en |
|
|
Yokohama National University |
出版者 |
|
|
出版者 |
宇宙航空研究開発機構(JAXA) |
出版者(英) |
|
|
出版者 |
Japan Aerospace Exploration Agency (JAXA) |
書誌情報 |
宇宙航空研究開発機構研究開発報告: 高エネルギー物質研究会: 平成29年度研究成果報告書
en : JAXA Research and Development Report: Technical Report of The Research Activity for High Energy Materials (2017)
巻 JAXA-RR-17-008,
p. 19-26,
発行日 2018-01-10
|
抄録 |
|
|
内容記述タイプ |
Abstract |
|
内容記述 |
アンモニウムジニトラミド(ADN: NH4N(NO2)2)は次世代固体/液体推進剤の酸化剤として最も期待されている. 本報告は, 量子化学計算によるADN の分解反応経路解明とその詳細反応モデル構築に関するものである. ADN は初期分解において, ADN 分子が分解してNO2・とNNO2NH4・が生成し, そのNNO2NH4・がNH3, N2O, OH・に分解する. さらにOH・がNO2・と結合することでHNO3 が生成する. 特定された反応経路構成する各素反応の反応速度定数は遷移状態理論および変分型遷移状態理論より反応速度定数を算出した. 熱力学データ(エントロピー, 比熱)は, 量子化学計算結果より分配関数を統計熱力学に基づき求めて算出した. 構築した詳細反応モデルを用いて昇温条件下のADN の分解機構を計算した結果, その熱挙動は実験値と良好に一致した. |
抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Ammonium dinitramide (ADN: NH4N(NO2)2) is the most promising oxidizer for next generation solid and liquid propellants. This work presents the decomposition pathway of liquid ADN and a detailed chemical kinetics model based on quantum chemical calculations. In the initial stage of decomposition, the ADN decomposes to NO2・ and NNO2NH4. Following the initial decomposition, NNO2NH4・ decomposes to N2O, NH3 and OH・, and the OH・ combines NO2・ to yield HNO3. Rate coefficients were determined to allow the application of transition state theory and variational transition state theory to identified reactions. In addition, Thermal corrections, entropies, and heat capacities of chemical species were calculated from the partition function using statistical machinery based on the quantum chemistry calculation. The new model employed herein simulates the thermal decomposition of ADN under specific heating conditions and successfully predicts the exothermic behaviour. |
内容記述 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
形態: カラー図版あり |
内容記述(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Physical characteristics: Original contains color illustrations |
ISSNONLINE |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
2433-2216 |
資料番号 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
資料番号: AA1730012004 |
レポート番号 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
レポート番号: JAXA-RR-17-008 |