| Item type |
学術雑誌論文 / Journal Article(1) |
| 公開日 |
2015-06-11 |
| タイトル |
|
|
タイトル |
Evaluation of Wall-Interference Correction Method Using Numerical Analysis and Porous Wall Model |
|
言語 |
en |
| 言語 |
|
|
言語 |
eng |
| 資源タイプ |
|
|
資源タイプ識別子 |
http://purl.org/coar/resource_type/c_6501 |
|
資源タイプ |
journal article |
| アクセス権 |
|
|
アクセス権 |
metadata only access |
|
アクセス権URI |
http://purl.org/coar/access_right/c_14cb |
| 著者 |
南部, 太介
橋本, 敦
上野, 真
村上, 桂一
佐藤, 哲也
Nambu, Taisuke
Hashimoto, Atsushi
Ueno, Makoto
Murakami, Keiichi
Sato, Tetsuya
|
| 著者所属 |
|
|
|
早稲田大学 |
| 著者所属 |
|
|
|
宇宙航空研究開発機構(JAXA) |
| 著者所属 |
|
|
|
宇宙航空研究開発機構(JAXA) |
| 著者所属 |
|
|
|
宇宙航空研究開発機構(JAXA) |
| 著者所属 |
|
|
|
早稲田大学 |
| 著者所属(英) |
|
|
|
en |
|
|
Waseda University |
| 著者所属(英) |
|
|
|
en |
|
|
Japan Aerospace Exploration Agency (JAXA) |
| 著者所属(英) |
|
|
|
en |
|
|
Japan Aerospace Exploration Agency (JAXA) |
| 著者所属(英) |
|
|
|
en |
|
|
Japan Aerospace Exploration Agency (JAXA) |
| 著者所属(英) |
|
|
|
en |
|
|
Waseda University |
| 出版者(英) |
|
|
出版者 |
American Institute of Aeronautics and Astronautics (AIAA) |
| 書誌情報 |
en : Journal of Aircraft
巻 52,
号 1,
p. 226-234,
発行日 2015-01
|
| 抄録(英) |
|
|
内容記述タイプ |
Other |
|
内容記述 |
Evaluation of the conventional linear wall-interference correction method is conducted using flows around a two-dimensional airfoil in a wind tunnel computed by computational fluid dynamics and a porous wall model. First, the computational results are validated by comparison with wind-tunnel test measurements. Then, the wall-interference effect is discussed using these results. Porous walls are effective for reducing blockage, which change the Mach number around the airfoil. However, high wall porosity causes large downwash, which changes the flow angle. In this paper, Mokry's method, which is one of the linear wall-interference correction methods, is evaluated quantitatively using computational fluid dynamics. Computational result with wind-tunnel walls are corrected by Mokry's method, and the corrected result is compared with the one without wind-tunnel walls. Mokry's method shows high accuracy in subsonic and no-stall conditions, which satisfy the requirement of the small-perturbation potential equation. Its accuracy is also high even if the model is large relative to the wind-tunnel size. However, an error of about 10 drag counts is caused due to a shock wave in transonic flow conditions, and accuracy rapidly degrades around the stall condition, where an error exceeding 100 counts is caused by flow separation. |
| ISSN |
|
|
収録物識別子タイプ |
ISSN |
|
収録物識別子 |
0021-8669 |
| 書誌レコードID |
|
|
収録物識別子タイプ |
NCID |
|
収録物識別子 |
AA00692384 |
| DOI |
|
|
|
識別子タイプ |
DOI |
|
|
関連識別子 |
http://dx.doi.org/10.2514/1.C032675 |
|
|
関連名称 |
info:doi/10.2514/1.C032675 |
| 資料番号 |
|
|
内容記述タイプ |
Other |
|
内容記述 |
資料番号: PA1420029000 |