WEKO3
アイテム
三次元遷音速積分方程式の数値解法とその応用
https://jaxa.repo.nii.ac.jp/records/43175
https://jaxa.repo.nii.ac.jp/records/43175065ef496-3823-4c95-a5c5-2de3973bd34f
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | テクニカルレポート / Technical Report(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2015-03-26 | |||||||||
タイトル | ||||||||||
タイトル | 三次元遷音速積分方程式の数値解法とその応用 | |||||||||
言語 | ||||||||||
言語 | jpn | |||||||||
資源タイプ | ||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_18gh | |||||||||
資源タイプ | technical report | |||||||||
その他のタイトル(英) | ||||||||||
その他のタイトル | A Numerical Solution of the Transonic Integral Equatios and its Application to Three-Dimensional Transonic Wing Design | |||||||||
著者 |
高梨, 進
× 高梨, 進
× Takanashi, Susumu
|
|||||||||
著者所属 | ||||||||||
航空宇宙技術研究所 | ||||||||||
著者所属(英) | ||||||||||
en | ||||||||||
National Aerospace Laboratory | ||||||||||
出版者 | ||||||||||
出版者 | 航空宇宙技術研究所 | |||||||||
出版者(英) | ||||||||||
出版者 | National Aerospace Laboratory(NAL) | |||||||||
書誌情報 |
航空宇宙技術研究所特別資料 en : Special Publication of National Aerospace Laboratory SP-3 巻 3, p. 279-292, 発行日 1984-11 |
|||||||||
抄録(英) | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | A numerical solution of the transonic integral equations is presented for three-dimensional transonic wing design. The objective of the design problem is to determine the wing geometry which realizes a prescribed pressure distribution on the wing surface. This boundary value problem can be formulated by the transonic integral equations with artificial viscosity terms. The resulting integral equations are sinrplified by introducing an approximate function for the space velocity distribution which reduces the three-dimensional problem to a two-dimensional one. The uniqueness of solution is guaranteed by imposing an additional condition, i. e., the closure condition at the trailing edge. To facilitate numerical evaluation of the definite integrals the wing surface is divided into a number of small rectangular panels. As a result, the singular integral equations are converted to a system of linear equations which can easily be solved by standard numerical techniques. An extension of the integral equation method to more general and versatile design procedure is described, and some of the design results for a transonic sweptback wing with an isobar pattern are also presented. | |||||||||
ISSN | ||||||||||
収録物識別子タイプ | ISSN | |||||||||
収録物識別子 | 0289-260X | |||||||||
書誌レコードID | ||||||||||
収録物識別子タイプ | NCID | |||||||||
収録物識別子 | AN10097345 | |||||||||
資料番号 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | 資料番号: NALSP0003033 | |||||||||
レポート番号 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | レポート番号: NAL SP-3 |