WEKO3
アイテム
An Example of Unsteady Laminar Boundary Layer Flow
https://jaxa.repo.nii.ac.jp/records/34578
https://jaxa.repo.nii.ac.jp/records/345781dae8f3e-f14b-459f-8225-4d2c640e4231
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2015-03-26 | |||||||||
タイトル | ||||||||||
タイトル | An Example of Unsteady Laminar Boundary Layer Flow | |||||||||
言語 | en | |||||||||
言語 | ||||||||||
言語 | eng | |||||||||
資源タイプ | ||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||||||
資源タイプ | departmental bulletin paper | |||||||||
その他のタイトル | ||||||||||
その他のタイトル | 非定常な層流境界層の解の例 | |||||||||
著者 |
谷, 一郎
× 谷, 一郎
× TANI, Itiro
|
|||||||||
出版者 | ||||||||||
出版者 | 東京大学航空研究所 | |||||||||
出版者(英) | ||||||||||
出版者 | Aeronautical Research Institute, University of Tokyo | |||||||||
書誌情報 |
東京大學航空研究所報告 en : Report/Aeronautical Research Institute, University of Tokyo 巻 24, 号 2, p. 31-42, 発行日 1958-06 |
|||||||||
抄録 | ||||||||||
内容記述タイプ | Abstract | |||||||||
内容記述 | 二次元の縮まない層流境界層の方程式を, 境界層の外側の速度UがU=V-x/(T-t)の形で与えられる場合に解いたものである。tは時間, Tは一定の時間, Vは一定の速度, xは壁に平行に測つた距離である。なおνを動粘性, yを壁に垂直に測つた距離として, 解をξ=8x/V(T-t)のべき級数の形で表わし, その係数をη=(y/2)(V/νx)(1/2)の函数とする。この係数の6個を微分方程式を積分することによつて求めた。しかし級数の収束はあまり速かでないので, それだけの係数では十分でなく, 剥離点まで解を進めて行くためには, 近似的な接続法を必要とする。このようにして計算すると, 剥離はξ=1.20で起ることが知られる。この問題の解は, 拡散筒の開きまたは翼の迎角が時間的に変える場合の非定常な流れの理解に有用と考えられる。 | |||||||||
抄録(英) | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | The flow in two-dimensional incompressible laminar boundary layer is discussed when the velocity U outside the boundary layer is given by the from U=V-x/(T-t), where t is the time, T a constant time, V a constant velocity, and x the distance parallel to the wall. A solution is obtained in the form of a power series in ξ=8x/V(T-t) whose coefficients are functions of η=(y/2)(v/_vx)^1/2,υ being the kinematic viscosity and y the distance normal to the wall. Six of the coefficients have been obtained by integrating the differential equations. Unfortunately the series converges so slowly that the coefficients obtained are not sufficient and an approximate method of continuation is required to carry out the solution to the point of separation. The method of continuation leads to the result that the separation occurs when ξ=1.20. The solution of the problem may be interpreted to provide some informations for the unsteady flow associated with a diffusor or an airfoil in which the angle of divergence or angle of attack varies with time. | |||||||||
ISSN | ||||||||||
収録物識別子タイプ | ISSN | |||||||||
収録物識別子 | 0376-1061 | |||||||||
書誌レコードID | ||||||||||
収録物識別子タイプ | NCID | |||||||||
収録物識別子 | AA00514444 | |||||||||
資料番号 | ||||||||||
内容記述タイプ | Other | |||||||||
内容記述 | 資料番号: SA2404767000 |