ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. コンテンツタイプ
  2. 紀要論文 (Departmental Bulletin Paper)
  1. 機関資料(JAXA, former ISAS, NAL, NASDA)
  2. 旧機関資料 (JAXA, former-ISAS, NAL, NASDA)
  3. 宇宙科学研究所: ISAS Report等を含む (former ISAS (The Institute of Space and Astronautical Science): Including ISAS Report etc.)
  4. Report of Aeronautical Research Institute, Tokyo Imperial University

平板上の亂流限界層に就て

https://jaxa.repo.nii.ac.jp/records/35540
https://jaxa.repo.nii.ac.jp/records/35540
d76d7be5-f3ca-413d-aca4-b57e36fa1675
名前 / ファイル ライセンス アクション
SA4148629.pdf SA4148629.pdf (293.7 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2015-03-26
タイトル
タイトル 平板上の亂流限界層に就て
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
その他のタイトル(英)
その他のタイトル On the Theory of Turbulent Boundary Layer on a Flat Plate.
著者 佐々木, 達治郎

× 佐々木, 達治郎

佐々木, 達治郎

Search repository
SASAKI, Tatudiro

× SASAKI, Tatudiro

en SASAKI, Tatudiro

Search repository
出版者
出版者 東京帝國大學航空研究所
出版者(英)
出版者 Aeronautical Research Institute, Tokyo Imperial University
書誌情報 東京帝國大學航空研究所報告
en : Report of Aeronautical Research Institute, Tokyo Imperial University

巻 16, 号 211, p. 483-492, 発行日 1941-08
抄録(英)
内容記述タイプ Other
内容記述 There are some theories on turbulent flow, such as momentum transfer theory, vorticity transfer theory and similarity theory. I prope here a mean vortex theory, in which the turbulence is considered to be composed of very fine vortices. These vortices decay or grow, but in a very small region their mean strength is not altered, and it is a function of space. The velocity distribution in a turbulent boundary layer is governed by the distribution of mean vortices. The equation of boundary layer on a flat plate is expressed by [numerical formula] (1) This is transformed by introducing the vorticity ζ as follows: [numerical formula]. (2) The first term of this equation means the variation of kinetic energy in the x direction, the second term means the Magnus effect acting on the vortex at a point considered. Starting from these considerations, and considering the mean vortex in an elementary area the following equation is derived, [numerical formula], (3) in which a, b and c are constants and w is the strength of a mean vortex. The general solution of (3) is [numerical formula], (4) u is derived from this equation, remembering w=∂u/∂y. I take two particular cases of (4). The one is expressed by the equation (7) on page 486, from which local friction coefficient is derived as shown in (9). This equation is transformed as the equation (11). By using F. Schultz-Grunow's experimental results, I calculated the constants as shown in (14). The mean velocity is calculated from (8), which is expressed in (12). The velocity distribution is shown in Fig.2. The other particular case is expressed by the equation (15), from which (17) is derived. This equation is the same as that derived by von Karman if α=1. From F. Schultz-Grunow's experimental results, I calculated the constants as follows: α=0.25. A=51.1, B=64.8.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA00387631
資料番号
内容記述タイプ Other
内容記述 資料番号: SA4148629000
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 23:17:29.866350
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3